Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Science ; 367(6479): 787-790, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054762

RESUMO

Aridity, which is increasing worldwide because of climate change, affects the structure and functioning of dryland ecosystems. Whether aridification leads to gradual (versus abrupt) and systemic (versus specific) ecosystem changes is largely unknown. We investigated how 20 structural and functional ecosystem attributes respond to aridity in global drylands. Aridification led to systemic and abrupt changes in multiple ecosystem attributes. These changes occurred sequentially in three phases characterized by abrupt decays in plant productivity, soil fertility, and plant cover and richness at aridity values of 0.54, 0.7, and 0.8, respectively. More than 20% of the terrestrial surface will cross one or several of these thresholds by 2100, which calls for immediate actions to minimize the negative impacts of aridification on essential ecosystem services for the more than 2 billion people living in drylands.


Assuntos
Mudança Climática , Secas , Solo
3.
Sci Adv ; 6(4): eaax8787, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32042898

RESUMO

Protists are ubiquitous in soil, where they are key contributors to nutrient cycling and energy transfer. However, protists have received far less attention than other components of the soil microbiome. We used amplicon sequencing of soils from 180 locations across six continents to investigate the ecological preferences of protists and their functional contributions to belowground systems. We complemented these analyses with shotgun metagenomic sequencing of 46 soils to validate the identities of the more abundant protist lineages. We found that most soils are dominated by consumers, although parasites and phototrophs are particularly abundant in tropical and arid ecosystems, respectively. The best predictors of protist composition (primarily annual precipitation) are fundamentally distinct from those shaping bacterial and archaeal communities (namely, soil pH). Some protists and bacteria co-occur globally, highlighting the potential importance of these largely undescribed belowground interactions. Together, this study allowed us to identify the most abundant and ubiquitous protists living in soil, with our work providing a cross-ecosystem perspective on the factors structuring soil protist communities and their likely contributions to soil functioning.

4.
Nat Ecol Evol ; 4(2): 210-220, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015427

RESUMO

The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes.


Assuntos
Ecossistema , Solo , Biodiversidade , Fungos , Humanos , Microbiologia do Solo
5.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964728

RESUMO

Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes.IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.

6.
Glob Chang Biol ; 26(2): 709-720, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31518466

RESUMO

Woody plant encroachment is a major land management issue. Woody removal often aims to restore the original grassy ecosystem, but few studies have assessed the role of woody removal on ecosystem functions and biodiversity at global scales. We collected data from 140 global studies and evaluated how different woody plant removal methods affected biodiversity (plant and animal diversity) and ecosystem functions (plant production, hydrological function, soil carbon) across global rangelands. Our results indicate that the impact of removal is strongly context dependent, varying with the specific response variable, removal method, and traits of the target species. Over all treatments, woody plant removal increased grass biomass and total groundstorey diversity. Physical and chemical removal methods increased grass biomass and total groundstorey biomass (i.e., non-woody plants, including grass biomass), but burning reduced animal diversity. The impact of different treatment methods declined with time since removal, particularly for total groundstorey biomass. Removing pyramid-shaped woody plants increased total groundstorey biomass and hydrological function but reduced total groundstorey diversity. Environmental context (e.g., aridity and soil texture) indirectly controlled the effect of removal on biomass and biodiversity by influencing plant traits such as plant shape, allelopathic, or roots types. Our study demonstrates that a one-size-fits-all approach to woody plant removal is not appropriate, and that consideration of woody plant identity, removal method, and environmental context is critical for optimizing removal outcomes. Applying this knowledge is fundamental for maintaining diverse and functional rangeland ecosystems as we move toward a drier and more variable climate.

7.
Mol Ecol ; 29(4): 752-761, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31697860

RESUMO

Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross-biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross-validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.

8.
Sci Total Environ ; 702: 134885, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31731121

RESUMO

Despite distinct roles of soil microbes in regulating carbon (C) respiration in diverse environments, it remains unclear whether microbial taxonomic and functional attributes can consistently predict soil C emissions across contrasting ecosystems. Here, we conducted a large-scale sampling event across two contrasting croplands (rice and wheat-corn crop rotation) to identify specific soil microbial phylotypes and functional genes associated with soil respiration rates. The results of structural equation modeling indicated that bacterial community composition had a strong link with C respiration rates in the two contrasting cropland types; however, this link was weaker for fungal communities. More importantly, we found that the relative abundances of bacterial Solirubrobacterales_480-2, Myxococcales_mle1-27 and fungal Westerdykella had consistently negative correlation with respiration rates across paddy and upland soils. We also identified taxa that are significantly correlated to C respiration in the paddy (e.g. Methylocaldum) and upland soils (e.g. Kribbella), respectively. Further, we found multiple associations between functional genes involved in microbial C metabolism and soil respiration rates. Our findings provide novel insights into understanding microbial predictors of soil CO2 emissions in diverse croplands, which have important implications for improving C emission predictions in terrestrial ecosystems.


Assuntos
Biodiversidade , Dióxido de Carbono/metabolismo , Microbiologia do Solo , Bactérias , Produtos Agrícolas , Fungos , Solo/química
9.
Microbiome ; 7(1): 143, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672173

RESUMO

BACKGROUND: N fixation is one of the most important microbially driven ecosystem processes on Earth, allowing N to enter the soil from the atmosphere, and regulating plant productivity. A question that remains to be answered is whether such a fundamental process would still be that important in an over-fertilized world, as the long-term effects of fertilization on N fixation and associated diazotrophic communities remain to be tested. Here, we used a 35-year fertilization experiment, and investigated the changes in N fixation rates and the diazotrophic community in response to long-term inorganic and organic fertilization. RESULTS: It was found that N fixation was drastically reduced (dropped by 50%) after almost four decades of fertilization. Our results further indicated that functionality losses were associated with reductions in the relative abundance of keystone and phylogenetically clustered N fixers such as Geobacter spp. CONCLUSIONS: Our work suggests that long-term fertilization might have selected against N fixation and specific groups of N fixers. Our study provides solid evidence that N fixation and certain groups of diazotrophic taxa will be largely suppressed in a more and more fertilized world, with implications for soil biodiversity and ecosystem functions.

10.
Sci Total Environ ; 697: 134204, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31491638

RESUMO

The shift in ecosystem multifunctionality during ecosystem succession (years to decades) remains largely unexplored. In this study, we used a 120-year-old pine temperate forest chronosequence (1: 1-19 years, stage 2: 20-39 years, stage 3: 40-59 years, stage 4: 60-79 years, stage 5: 80-99 years, stage 6: 100-120 years) to evaluate the role that time plays in shaping ecosystem multifunctionality (nutrient cycling, carbon stocks, water regulation, decomposition and wood production), and found that, over the first century, ecosystem functioning gradually increased every ~50 years. Such a result was maintained for individual groups of ecosystem functions and services including nutrient cycling, carbon stocks, decomposition and wood production. Plant diversity and soil stoichiometry (C:N ratio) were the major environmental predictors for the changes in ecosystem multifunctionality during forest secondary succession. Plant diversity increased during ecosystem succession and was positively related to ecosystem multifunctionality. The soil C:N ratio decreased during ecosystem succession and was negatively related to multifunctionality. Our results suggest that increases in aboveground resource heterogeneity (higher plant diversity) and organic matter quality (lower soil C:N ratios) could help explain the increases in multifunctionality over a century of forest development. Our work illustrates the importance of time in shaping multifunctionality during the first century of ecosystem succession, and further provide important insights for the management of temperate forest ecosystems.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Florestas , Pinus , Solo/química , Biomassa , Carbono , Árvores
11.
Nat Commun ; 10(1): 3481, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375717

RESUMO

Identifying the global drivers of soil priming is essential to understanding C cycling in terrestrial ecosystems. We conducted a survey of soils across 86 globally-distributed locations, spanning a wide range of climates, biotic communities, and soil conditions, and evaluated the apparent soil priming effect using 13C-glucose labeling. Here we show that the magnitude of the positive apparent priming effect (increase in CO2 release through accelerated microbial biomass turnover) was negatively associated with SOC content and microbial respiration rates. Our statistical modeling suggests that apparent priming effects tend to be negative in more mesic sites associated with higher SOC contents. In contrast, a single-input of labile C causes positive apparent priming effects in more arid locations with low SOC contents. Our results provide solid evidence that SOC content plays a critical role in regulating apparent priming effects, with important implications for the improvement of C cycling models under global change scenarios.

13.
Nat Commun ; 10(1): 2369, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147554

RESUMO

Despite having key functions in terrestrial ecosystems, information on the dominant soil fungi and their ecological preferences at the global scale is lacking. To fill this knowledge gap, we surveyed 235 soils from across the globe. Our findings indicate that 83 phylotypes (<0.1% of the retrieved fungi), mostly belonging to wind dispersed, generalist Ascomycota, dominate soils globally. We identify patterns and ecological drivers of dominant soil fungal taxa occurrence, and present a map of their distribution in soils worldwide. Whole-genome comparisons with less dominant, generalist fungi point at a significantly higher number of genes related to stress-tolerance and resource uptake in the dominant fungi, suggesting that they might be better in colonising a wide range of environments. Our findings constitute a major advance in our understanding of the ecology of fungi, and have implications for the development of strategies to preserve them and the ecosystem functions they provide.


Assuntos
Ascomicetos/isolamento & purificação , Microbiologia do Solo , Ascomicetos/genética , DNA Fúngico/análise , Ecossistema , Micobioma/genética , Filogenia
14.
ISME J ; 13(11): 2727-2736, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31249390

RESUMO

Under controlled laboratory conditions, high and low ammonium availability are known to favor soil ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities, respectively. However, whether this niche segregation is maintained under field conditions in terrestrial ecosystems remains unresolved, particularly at the global scale. We hypothesized that perennial vegetation might favor AOB vs. AOA communities compared with adjacent open areas devoid of perennial vegetation (i.e., bare soil) via several mechanisms, including increasing the amount of ammonium in soil. To test this niche-differentiation hypothesis, we conducted a global field survey including 80 drylands from 6 continents. Data supported our hypothesis, as soils collected under plant canopies had higher levels of ammonium, as well as higher richness (number of terminal restriction fragments; T-RFs) and abundance (qPCR amoA genes) of AOB, and lower richness and abundance of AOA, than those collected in open areas located between plant canopies. Some of the reported associations between plant canopies and AOA and AOB communities can be a consequence of the higher organic matter and available N contents found under plant canopies. Other aspects of soils associated with vegetation including shading and microclimatic conditions might also help explain our results. Our findings provide strong evidence for niche differentiation between AOA and AOB communities in drylands worldwide, advancing our understanding of their ecology and biogeography at the global scale.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Microbiologia do Solo , Archaea/genética , Bactérias/classificação , Bactérias/genética , Betaproteobacteria/metabolismo , Clima , Ecossistema , Meio Ambiente , Nitrificação , Oxirredução , Filogenia
15.
Appl Environ Microbiol ; 85(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253672

RESUMO

Mycobacteria are a diverse bacterial group ubiquitous in many soil and aquatic environments. Members of this group have been associated with human and other animal diseases, including the nontuberculous mycobacteria (NTM), which are of growing relevance to public health worldwide. Although soils are often considered an important source of environmentally acquired NTM infections, the biodiversity and ecological preferences of soil mycobacteria remain largely unexplored across contrasting climates and ecosystem types. Using a culture-independent approach by combining 16S rRNA marker gene sequencing with mycobacterium-specific hsp65 gene sequencing, we analyzed the diversity, distributions, and environmental preferences of soil-dwelling mycobacteria in 143 soil samples collected from a broad range of ecosystem types. The surveyed soils harbored highly diverse mycobacterial communities that span the full extent of the known mycobacterial phylogeny, with most soil mycobacteria (97% of mycobacterial clades) belonging to previously undescribed lineages. While mycobacteria tended to have higher relative abundances in cool, wet, and acidic soil environments, several individual mycobacterial clades had contrasting environmental preferences. We identified the environmental preferences of many mycobacterial clades, including the clinically relevant Mycobacterium avium complex that was more commonly detected in wet and acidic soils. However, most of the soil mycobacteria detected were not closely related to known pathogens, calling into question previous assumptions about the general importance of soil as a source of NTM infections. Together, this work provides novel insights into the diversity, distributions, and ecological preferences of soil mycobacteria and lays the foundation for future efforts to link mycobacterial phenotypes to their distributions.IMPORTANCE Mycobacteria are common inhabitants of soil, and while most members of this bacterial group are innocuous, some mycobacteria can cause environmentally acquired infections of humans and other animals. Human infections from nontuberculous mycobacteria (NTM) are increasingly prevalent worldwide, and some areas appear to be "hotspots" for NTM disease. While exposure to soil is frequently implicated as an important mode of NTM transmission, the diversity, distributions, and ecological preferences of soil mycobacteria remain poorly understood. We analyzed 143 soils from a range of ecosystems and found that mycobacteria and lineages within the group often exhibited predictable preferences for specific environmental conditions. Soils harbor large amounts of previously undescribed mycobacterial diversity, and lineages that include known pathogens were rarely detected in soil. Together, these findings suggest that soil is an unlikely source of many mycobacterial infections. The biogeographical patterns we documented lend insight into the ecology of this important group of soil-dwelling bacteria.

16.
Sci Total Environ ; 676: 197-205, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048151

RESUMO

The importance of diet in regulating the gut microbiome of globally distributed and functionally important soil generalist invertebrates such as collembolans remain poorly understood. Here, we studied a model collembolan (Folsomia candida) and found that diet (bacteria, plant litters, yeast, mixed food) is a critical factor in regulating the microbial diversity and community composition of this important soil organism. Collembolans fed with litter exhibited the lowest bacterial diversity and were dominated by Ochrobactrum. Conversely, collembolans fed with mixed diets resulted in the highest bacterial diversity. Our findings further suggest that microbial communities associated with different diets are linked to different levels of collembolan fitness. For example, the relative abundance of the genera of unclassified Thermogemmatisporaceae, Brevibacillus, and Novosphingobium were positively correlated with growth of the collembolans. Together, our work provides evidence that diet is a major force controlling the gut microbiome of collembolans, and is a good environmental predictor for collembolan growth, with implications for ecosystem functioning in terrestrial environments.


Assuntos
Artrópodes/microbiologia , Dieta , Microbioma Gastrointestinal , Animais , Microbiota , Solo
17.
Sci Rep ; 9(1): 6892, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053834

RESUMO

Some microbes enhance stress tolerance in plants by minimizing plant ethylene levels via degradation of its immediate precursor, 1-aminocyclopropane-1-carboxylate (ACC), in the rhizosphere. In return, ACC is used by these microbes as a source of nitrogen. This mutualistic relationship between plants and microbes may be used to promote soil properties in stressful environments. In this study, we tested the hypothesis that amendments of ACC in soils reshape the structure of soil microbiome and alleviate the negative impacts of salinity on soil properties. We treated non-saline and artificially-developed saline soils with ACC in different concentrations for 14 days. The structure of soil microbiome, soil microbial properties and productivity were examined. Our results revealed that microbial composition of bacteria, archaea and fungi in saline soils was affected by ACC amendments; whereas community composition in non-saline soils was not affected. The amendments of ACC could not fully counteract the negative effects of salinity on soil microbial activities and productivity, but increased the abundance of ACC deaminase-encoding gene (acdS), enhanced soil microbial respiration, enzymatic activity, nitrogen and carbon cycling potentials and Arabidopsis biomass in saline soils. Collectively, our study indicates that ACC amendments in soils could efficiently ameliorate salinity impacts on soil properties and plant biomass production.

18.
Proc Natl Acad Sci U S A ; 116(13): 6187-6192, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850539

RESUMO

Increasing plant diversity can increase ecosystem functioning, stability, and services in both natural and managed grasslands, but the effects of herbivore diversity, and especially of livestock diversity, remain underexplored. Given that managed grazing is the most extensive land use worldwide, and that land managers can readily change livestock diversity, we experimentally tested how livestock diversification (sheep, cattle, or both) influenced multidiversity (the diversity of plants, insects, soil microbes, and nematodes) and ecosystem multifunctionality (including plant biomass production, plant leaf N and P, above-ground insect abundance, nutrient cycling, soil C stocks, water regulation, and plant-microbe symbiosis) in the world's largest remaining grassland. We also considered the potential dependence of ecosystem multifunctionality on multidiversity. We found that livestock diversification substantially increased ecosystem multifunctionality by increasing multidiversity. The link between multidiversity and ecosystem multifunctionality was always stronger than the link between single diversity components and functions. Our work provides insights into the importance of multitrophic diversity to maintain multifunctionality in managed ecosystems and suggests that diversifying livestock could promote both multidiversity and ecosystem multifunctionality in an increasingly managed world.


Assuntos
Criação de Animais Domésticos/métodos , Biodiversidade , Pradaria , Gado , Animais , Bovinos , Conservação dos Recursos Naturais/métodos , Ecossistema , Ovinos
19.
Glob Chang Biol ; 25(6): 2152-2161, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924573

RESUMO

Past vegetation and climatic conditions are known to influence current biodiversity patterns. However, whether their legacy effects affect the provision of multiple ecosystem functions, that is, multifunctionality, remains largely unknown. Here we analyzed soil nutrient stocks and their transformation rates in 236 drylands from six continents to evaluate the associations between current levels of multifunctionality and legacy effects of the Last Glacial Maximum (LGM) desert biome distribution and climate. We found that past desert distribution and temperature legacy, defined as increasing temperature from LGM, were negatively correlated with contemporary multifunctionality even after accounting for predictors such as current climate, soil texture, plant species richness, and site topography. Ecosystems that have been deserts since the LGM had up to 30% lower contemporary multifunctionality compared with those that were nondeserts during the LGM. In addition, ecosystems that experienced higher warming rates since the LGM had lower contemporary multifunctionality than those suffering lower warming rates, with a ~9% reduction per extra degree Celsius. Past desert distribution and temperature legacies had direct negative effects, while temperature legacy also had indirect (via soil sand content) negative effects on multifunctionality. Our results indicate that past biome and climatic conditions have left a strong "functionality debt" in global drylands. They also suggest that ongoing warming and expansion of desert areas may leave a strong fingerprint in the future functioning of dryland ecosystems worldwide that needs to be considered when establishing management actions aiming to combat land degradation and desertification.


Assuntos
Clima , Ecossistema , Solo/química , Biodiversidade , Conservação dos Recursos Naturais , Plantas/metabolismo , Temperatura
20.
ISME J ; 13(8): 2120-2124, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30926921

RESUMO

Many soil bacteria and fungi remain unclassified at the highest taxonomic ranks (e.g. phyla level), which hampers our ability to assess the ecology and functional capabilities of these soil organisms in terrestrial ecosystems globally. The first logical step toward the classification of these unknown soil taxa is to identify potential locations on Earth where these unclassified bacteria and fungi are feasibly most prevalent. To do this, here I used data from a global soil survey across 235 locations, including amplicon sequencing information for fungal and bacterial communities, and generated global atlases highlighting those soils where the percentages of taxa of bacteria and fungi with an unknown phyla are expected to be more prevalent. Results indicate that soil samples with the largest percentage of fungal taxa with an unknown phyla can be found in dry forests and grasslands, while those with the largest percentage of bacterial taxa with an unknown phyla are found in boreal and tropical forests. This information can be used by taxonomists and microbiologists to target these potentially new soil taxa.


Assuntos
Bactérias/classificação , Fungos/classificação , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Florestas , Fungos/genética , Fungos/isolamento & purificação , Geografia , Pradaria , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA