Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Clin Chim Acta ; 523: 208-215, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34599900

RESUMO

BACKGROUND: We identified proteins significant for rheumatoid arthritis (RA) in peripheral blood mononuclear cells (PBMCs), and to clarify mechanisms mediated by underlying proteins that may involve in the pathogenesis of RA. METHODS: Proteome-wide protein expressions were profiled by employing label-free quantitative proteomics methodology (Easy-nLC1000 and Q-exactive). The t-test was applied to identify differentially expressed proteins (DEP, p ≤ 0.05) between RA case and control samples. Gene Ontology enrichment analyses and Protein-Protein Interaction analyses were performed to annotate functions of DEPs. The selected DEP was validated in independent samples using Simple Western assay. Plasma protein level of α2 component of integrin (ITGA2) was measured by using ELISA. The DEP, ITGA2, was assessed for its effects on T cell proliferation, cell cycle, apoptosis, and inflammatory cytokine expression. RESULTS: Sixty-four DEPs (p < 0.05) were identified in PBMCs. The selected ITGA2 (Fold Change, FC = 2.20, p = 1.49E-02) was validated to be up-regulated (FC = 12.33, p = 4.90E-2) with RA, and plasma ITGA2 protein level significantly elevated in RA patients vs. controls. Over-expression of ITGA2 could promote proliferation and inhibit apoptosis of Jurkat T cell, and induce IL-8, IFN-γ and TNF-α expression in Jurkat T cells. CONCLUSIONS: ITGA2 protein was significantly over-expressed in PBMCs in RA patients, and affects T cell growth and pro-inflammatory cytokine expression in T cells.

2.
Ann Palliat Med ; 10(9): 9453-9466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34628871

RESUMO

BACKGROUND: Several genome-wide association studies have found that HLA class II histocompatibility antigen, DQ beta1 (HLA-DQB1) and HLA class II histocompatibility antigen, DR beta1 (HLA-DRB1) were associated with immunoglobulin A nephropathy (IgAN). However, few studies have explored the association between HLA-DQB1 and HLA-DRB1 expression and IgAN. This is the first study to investigate the relationship between HLA-DQB1 and HLA-DRB1 expression and clinical pathological characteristics. METHODS: A total of 113 patients with biopsy-proven IgAN and 71 healthy control patients participated in this study. HLA-DQB1 and HLA-DRB1 expression in peripheral blood lymphocytes was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and flow cytometry. Serum galactose-deficient IgA1 (Gd-IgA1) level was measured by an enzyme-linked immunosorbent assay kit. The clinical and histopathological data of patients with IgAN were collected at the time of renal biopsy. Pearson's or Spearman's correlation coefficients were used to analyze the correlation between the expression of HLA-DQB1 and HLA-DRB1 mRNA and protein and the clinical pathological features of IgAN. RESULTS: HLA-DQB1 and HLA-DRB1 messenger ribonucleic acid expression was decreased in IgAN patients compared to healthy control patients (P<0.01). HLA-DQB1 and HLA-DRB1 protein expression was significantly lower in IgAN patients than healthy control patients (P<0.05). HLA-DQB1 and HLA-DRB1 protein expression was positively correlated with 24-h urinary protein excretion (P<0.05). HLA-DRB1 protein expression was negatively correlated with renal function as measured by an estimated glomerular filtration rate (P<0.05). HLA-DRB1 protein expression was higher in patients with crescentic IgAN than patients without crescent formation (P<0.05). CONCLUSIONS: Our study found the expression of HLA-DQB1, HLA-DRB1 were associated with the disease severity of IgAN and abnormal HLA-DQB1 and HLA-DRB1 expression may aggravate the progression of IgAN. We intend to gather further follow-up data to explore the effects of HLA-DQB1 and HLA-DRB1 expression on the prognosis of IgAN.


Assuntos
Glomerulonefrite por IGA , Alelos , Frequência do Gene , Estudo de Associação Genômica Ampla , Glomerulonefrite por IGA/genética , Cadeias HLA-DRB1/genética , Haplótipos , Humanos , Índice de Gravidade de Doença
3.
J Musculoskelet Neuronal Interact ; 21(3): 351-357, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465673

RESUMO

OBJECTIVES: To explore complex correlations between obesity (OB) and osteoporosis (OP) after adjustment of static mechanical loading from weight and fat free mass (FFM). METHODS: A total of 3749 Chinese aged ≥65 years were selected from our ongoing cohort study. OB indices and bone mineral density (BMD) were measured for each subject. Linear regression analyses were performed to explore the correlations between OB indices and OP under three adjustment models (unadjusted, adjusted with weight and adjusted with FFM). RESULTS: Under no adjustment, three general obesity indices (body mass index: BMI, fat mass: FM, and percentage FM: PFM) were positively associated with BMD at three skeletal sites (P<0.001) in the regression analyses. However, after the adjustment with weight, these associations were mostly significant but reverse i.e., negatively in direction. After adjustment with FFM, the three indices were still positively and significantly (P<0.001) associated with BMD but regression coefficients were smaller compared to the unadjusted associations. Similar associations were observed for central adiposity and lower limb adiposity indices. CONCLUSIONS: The combined relation of OB to OP due to the physiological factors secreted from adipose tissues and the static mechanical loading from FM is positive in direction.

4.
Front Immunol ; 12: 722027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489971

RESUMO

Approximately half of the SARS-CoV-2 infections occur without apparent symptoms, raising questions regarding long-term humoral immunity in asymptomatic individuals. Plasma levels of immunoglobulin G (IgG) and M (IgM) against the viral spike or nucleoprotein were determined for 25,091 individuals enrolled in a surveillance program in Wuhan, China. We compared 405 asymptomatic individuals who mounted a detectable antibody response with 459 symptomatic COVID-19 patients. The well-defined duration of the SARS-CoV-2 endemic in Wuhan allowed a side-by-side comparison of antibody responses following symptomatic and asymptomatic infections without subsequent antigen re-exposure. IgM responses rapidly declined in both groups. However, both the prevalence and durability of IgG responses and neutralizing capacities correlated positively with symptoms. Regardless of sex, age, and body weight, asymptomatic individuals lost their SARS-CoV-2-specific IgG antibodies more often and rapidly than symptomatic patients did. These findings have important implications for immunity and favour immunization programs including individuals after asymptomatic infections.


Assuntos
Anticorpos Antivirais/sangue , Infecções Assintomáticas/epidemiologia , COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , COVID-19/epidemiologia , China , Monitoramento Epidemiológico , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Adulto Jovem
6.
J Diabetes Investig ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494385

RESUMO

INTRODUCTION: As a lytic inflammatory cell death, pyroptosis has been recently described but has not been unequivocally elucidated in diabetic nephropathy (DN). VX-765 is a safe and effective inhibitor of caspase-1, that was well tolerated in a phase II clinical trial in patients with epilepsy, but its application in DN is still undefined. MATERIALS AND METHODS: Immunoblot, co-immunoprecipitation, confocal microscope and flow cytometry were used to analyze the effects of glucose on pyroptosis in renal tubular epithelia (HK-2). In vitro, selective caspase-1 inhibitors VX-765 and Z-YVAD-FMK were administered. Pyroptosis and fibrogenesis were determined by immunoblot, ELISA, cytotoxicity assay and flow cytometry. In vivo, diabetic mice were administered with 100 mg/kg VX-765. Renal function, pathological changes, and the expressions of NLRC4, GSDMD, IL-1ß, collagen I, fibronectin and CD45 in renal cortex were evaluated. RESULTS: We identified NLRC4 as a sensor for caspase-1 activation. Moreover, we provided morphological and molecular evidence for pyroptosis in glucose-stressed tubular cells, including ballooned cell membrane, caspase-1 immunoreactivity, GSDMD cleavage, and the release of inflammatory cytokine and cellular contents. All these effects were prevented by treatment with VX-765 or Z-YVAD-FMK, confirming that caspase-1 effectively regulates the occurrence of pyroptosis in HK-2 cells. In vivo, treatment of diabetic animals with VX-765 ameliorated renal function, suppressed inflammatory cell infiltration and pyroptosis-associated protein expression, and mitigated tubulointerstitial fibrosis. CONCLUSIONS: This work revealed that caspase-1-mediated pyroptosis drives renal inflammation and fibrosis in diabetes. Our results are the first demonstration of VX-765 representing a promising therapeutic opportunity for alleviating the progression of DN.

7.
Virol Sin ; 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569015

RESUMO

Baculoviruses are large DNA viruses which have been widely used as expression vectors and biological insecticides. Homologous recombination and Bac-to-Bac system have been the main methods for manipulating the baculovirus genome. Recently, we generated a synthetic baculovirus AcMNPV-WIV-Syn1 which fully resembled its parental virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we report the modification of AcMNPV-WIV-Syn1 into a novel bacmid, AcBac-Syn, which can be used as a backbone for Bac-to-Bac system. To achieve this, a vector contained a LacZ:attTn7 and egfp cassette was constructed, and recombined with a linearized AcMNPV-WIV-Syn1 genome by transformation-associated recombination in yeast to generate bacmid AcBac-Syn. The bacmid was then transfected to insect cells and the rescued virus showed similar biological characteristics to the wild-type virus in terms of the kinetics of budded virus production, the morphology of occlusion bodies, and the oral infectivity in insect larvae. For demonstration, a red fluorescent protein gene Dsred was transposed into the attTn7 site by conventional Bac-to-Bac method, and the transfection and infection assays showed that AcBac-Syn can be readily used for foreign gene insertion and expression. AcBac-Syn has several advantages over the conventional AcMNPV bacmids, such as it contains an egfp reporter gene which facilitates visualization of virus propagation and titration; its DNA copy numbers could be induced to a higher level in E. coli; and the retaining of the native polyhedrin gene in the genome making it an attractive system for studying the functions of gene related to occlusion body assembly and oral infection.

8.
Hum Hered ; : 1-11, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34569543

RESUMO

OBJECTIVES: Peripheral blood mononuclear cells (PBMCs) are critical for immunity and participate in multiple human diseases, including rheumatoid arthritis (RA). PhosSNPs are nonsynonymous SNPs influencing protein phosphorylation, thus probably modulate cell signaling and gene expression. We aimed to identify phosSNPs-regulated gene network/pathway potentially significant for RA. METHODS: We collected genome-wide phosSNP genotyping data and transcriptome-wide mRNA expression data from PBMCs of a Chinese sample. We discovered and verified with public datasets differentially expressed genes (DEGs) associated with RA, and replicated RA-associated SNPs in our study sample. We performed a targeted expression quantitative trait locus (eQTL) study on significant phosSNPs and DEGs. RESULTS: We identified 29 nominally significant eQTL phosSNPs and 83 target genes, and constructed comprehensive regulatory/interaction networks, highlighting the vital effects of two eQTL phosSNPs (rs371513 and rs4824675, FDR <0.05) and four critical node genes (HSPA4, NDUFA2, MRPL15, and ATP5O). Besides, two node/key genes NDUFA2 and ATP5O, regulated by rs371513, were significantly enriched in mitochondrial oxidative phosphorylation pathway. Besides, four pairs of eQTL effects were replicated independently in whole blood and/or transformed fibroblasts. CONCLUSIONS: The findings delineated a potential role of protein phosphorylation and genetic variations in RA and warranted the significant roles of phosSNPs in regulating RA-associated genes expression in PBMCs. The results pointed out the relevance and significance of oxidative phosphorylation pathway to RA.

9.
Emerg Microbes Infect ; : 1-40, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570681

RESUMO

Tick-borne viruses (TBVs) capable of transmitting between ticks and hosts have been increasingly recognized as a global public health concern. In this study, Hyalomma ticks and serum samples from camels were collected using recorded sampling correlations in eastern Kenya. Viromes of pooled ticks were profiled by metagenomic sequencing, revealing a diverse community of viruses related to at least 11 families. Five highly abundant viruses, including three novel viruses (Iftin tick virus, Mbalambala tick virus [MATV], and Bangali torovirus [BanToV]) and new strains of previously identified viruses (Bole tick virus 4 [BLTV4] and Liman tick virus [LMTV]), were characterized in terms of genome sequences, organizations, and phylogeny, and their molecular prevalence was investigated in individual ticks. Moreover, viremia and antibody responses to these viruses have been investigated in camels. MATV, BLTV4, LMTV, and BanToV were identified as viral pathogens that can potentially cause zoonotic diseases. The transmission patterns of these viruses were summarized, suggesting three different types according to the sampling relationships between viral RNA-positive ticks and camels positive for viral RNA and/or antibodies. They also revealed the frequent transmission of BanToV and limited but effective transmission of other viruses between ticks and camels. Furthermore, follow-up surveys on TBVs from tick, animal, and human samples with definite sampling relationships are suggested. The findings revealed substantial threats from the emerging TBVs and may guide the prevention and control of TBV-related zoonotic diseases in Kenya and in other African countries.

10.
Ann Palliat Med ; 10(8): 9025-9038, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488389

RESUMO

BACKGROUND: Cisplatin has been a vital drug used for tumor treatment because of its excellent effect on numerous malignant solid cancers. Nonetheless, its nephrotoxicity is non-negligible in clinical practice. This study aims to provide a new understanding of the molecular mechanism of transient receptor potential ankyrin 1 (TRPA1) in cisplatin-induced renal apoptosis. METHODS: We evaluated the effect on apoptosis, TRPA1 expression, and intracellular calcium concentration of human kidney 2 (HK-2) cells induced by diamminedichloroplatinum (DDP). Additionally, we also assessed DDP-induced apoptosis, the expression of Bax, caspase3, cleaved-cas3, p53, Bcl-2 and intracellular calcium concentration combined with HC-030031 and/or pifithrin-α. The effect of FK506 on apoptosis of HK-2 cells induced by DDP and the expression of the nuclear factor of activated T cells (NFAT) protein treated with HC-030031, pifithrin-α, and/or FK506 were also explored. RESULTS: The results showed that apoptosis, TRPA1 expression, and intracellular calcium concentration of HK-2 cell induced by DDP were enhanced in a dose-dependent manner. HC-030031 and pifithrin-α relieved apoptosis, and intracellular calcium concentration and the expression of NFAT and phospho-NFAT (p-NFAT) were induced by DDP. HC-030031 combined with pifithrin-α further aggravated the above-mentioned tendency, including relieved apoptosis, intracellular calcium concentration, and NFAT and p-NFAT expression. HC-030031 and FK506 decelerated the apoptosis, and NFAT and p-NFAT expression of HK-2 cells was induced by DDP, while simultaneous treatment with HC-030031 and FK506 further decreased apoptosis and protein expression. However, the expression of Bcl-2 increased when HC-030031, pifithrin-α, or FK506 was used alone, and HC-030031 combined with pifithrin-α or FK506 further improved the expression of Bcl-2. CONCLUSIONS: TRPA1 mediates cisplatin-induced apoptosis in renal tubular cells via the calcineurin-nuclear factor of activated T-cells-p53 signaling pathway.


Assuntos
Apoptose , Cálcio , Cisplatino , Túbulos Renais/citologia , Transdução de Sinais , Canal de Cátion TRPA1/metabolismo , Linhagem Celular , Cisplatino/farmacologia , Humanos
11.
Water Res ; 203: 117553, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425437

RESUMO

Waterborne pathogens, such as Cryptosporidium parvum, pose a major threat to public health globally, and this requires screening of drinking and environmental water for low number of contaminating microbes. However, current detection approaches generally require trained experts with sophisticated instruments, and are not suitable for large-scale screening and rapid outbreak response. Recent advances in ultrasensitive CRISPR/Cas-based biosensing continue to expand the range of detectable molecular targets, however single microbes could not be directly detected so far, especially in environmental samples. Here, we report an ultrasensitive CRISPR/Cas12a-powered immunosensing method suitable for microbial detection which links antibody-based recognition with CRISPR/Cas12a-based fluorescent signal amplification through an antibody-DNA conjugate. This approach is shown here to detect whole 4 µm size Cryptosporidium parvum oocysts with a linear range from 6.25 - 1600 oocysts/mL, at a maximum sensitivity of single oocyst per sample. Its potential to apply to various complex sample matrices has also been demonstrated. After sample dilution by factor of 10, we were able to detect 10 oocysts from a back-wash mud samples from water treatment plate. This method uses the same experimental setup (plate reader) as a conventional ELISA assay thus reducing the need for microscopy-based identification of Cryptosporidium, which represents the gold-standard but requires high level expertise and time-consuming manual counting. This work highlights the potential of CRISPR/Cas-based biosensing for water quality assessment and ultrasensitive whole pathogen detection.


Assuntos
Técnicas Biossensoriais , Criptosporidiose , Cryptosporidium , Animais , Sistemas CRISPR-Cas , Cryptosporidium/genética , Imunoensaio , Oocistos
12.
Antiviral Res ; 194: 105161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391783

RESUMO

Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 outbreak in West Africa. Currently, no effective antiviral treatments have been approved for clinical use. Compound 1 RYL-634 is a quinolone-derived compound that can inhibit dihydroorotate dehydrogenase, a rate-limiting enzyme in the de novo pyrimidine synthesis pathway and it exhibited antiviral activity against multiple RNA virus infection. In this study, we evaluated the efficacy of a panel of newly developed compounds based on RYL-634 against EBOV infection. Our data showed that RYL-634 as well as its derivatives are effective against EBOV transcription- and replication-competent virus-like particle (trVLP) infection and authentic EBOV infection in vitro at low nanomolar IC50 values and relatively high CC50. Of note, the new derivative RYL-687 had the lowest IC50 at approximately 7 nM and was almost 6 times more potent than remdesivir (GS-5734). Exogenous addition of different metabolites in the pyrimidine de novo synthesis pathway confirmed DHODH as the target of RYL-687. These data provide evidence that such quinolone-derived compounds are promising therapeutic candidates against EBOV infection.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34336145

RESUMO

The on-going pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to unprecedented medical and socioeconomic crises. Although the viral pathogenesis remains elusive, deficiency of effective antiviral interferon (IFN) responses upon SARS-CoV-2 infection has been recognized as a hallmark of COVID-19 contributing to the disease pathology and progress. Recently, multiple proteins encoded by SARS-CoV-2 have been shown to act as potential IFN antagonists with diverse possible mechanisms. Here, we summarize and discuss the strategies of SARS-CoV-2 for evasion of innate immunity (particularly the antiviral IFN responses), understanding of which will facilitate not only the elucidation of SARS-CoV-2 infection and pathogenesis but also the development of antiviral intervention therapies.

14.
Nat Commun ; 12(1): 4351, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272380

RESUMO

Small-molecule modulators of TLR8 have drawn much interests as it plays pivotal roles in the innate immune response to single-stranded RNAs (ssRNAs) derived from viruses. However, their clinical uses are limited because they can invoke an uncontrolled, global inflammatory response. The efforts described herein culminate in the fortuitous discovery of a tetrasubstituted imidazole CU-CPD107 which inhibits R848-induced TLR8 signaling. In stark contrast, CU-CPD107 shows unexpected synergistic agonist activities in the presence of ssRNA, while CU-CPD107 alone is unable to influence TLR8 signaling. CU-CPD107's unique, dichotomous behavior sheds light on a way to approach TLR agonists. CU-CPD107 offers the opportunity to avoid the undesired, global inflammation side effects that have rendered imidazoquinolines clinically irrelevant, providing an insight for the development of antiviral drugs.


Assuntos
Imidazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/antagonistas & inibidores , Calorimetria , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/química , Inflamação , Simulação de Acoplamento Molecular , Quinolinas/química , Quinolinas/farmacologia , RNA/química , RNA/farmacologia , Proteínas Recombinantes , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo , Difração de Raios X
15.
Emerg Microbes Infect ; 10(1): 1589-1597, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197281

RESUMO

Safe and effective vaccines are still urgently needed to cope with the ongoing COVID-19 pandemic. Recently, we developed a recombinant COVID-19 vaccine (V-01) containing fusion protein (IFN-PADRE-RBD-Fc dimer) as antigen verified to induce protective immunity against SARS-CoV-2 challenge in pre-clinical study, which supported progression to Phase I clinical trials in humans. A Randomized, double-blind, placebo-controlled Phase I clinical trial was initiated at the Guangdong Provincial Center for Disease Control and Prevention (Gaozhou, China) in February 2021. Healthy adults aged between 18 and 59 years and over 60 years were sequentially enrolled and randomly allocated into three subgroups (1:1:1) either to receive the vaccine (10, 25, and 50 µg) or placebo (V-01: Placebo = 4:1) intramuscularly with a 21-day interval by a sentinel and dose escalation design. The data showed a promising safety profile with approximately 25% vaccine-related overall adverse events (AEs) within 30 days and no grade 3 or worse AEs. Besides, V-01 provoked rapid and strong immune responses, elicited substantially high-titre neutralizing antibodies and anti-RBD IgG peaked at day 35 or 49 after first dose, presented with encouraging immunogenicity at low dose (10 µg) subgroup and elderly participants, which showed great promise to be used as all-aged (18 and above) vaccine against COVID-19. Taken together, our preliminary findings indicate that V-01 is safe and well tolerated, capable of inducing rapid and strong immune responses, and warrants further testing in Phase II/III clinical trials.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Interferons/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , China , Método Duplo-Cego , Feminino , Humanos , Imunoglobulina G/sangue , Interferons/administração & dosagem , Interferons/genética , Masculino , Pessoa de Meia-Idade , Placebos , Vacinação/efeitos adversos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Adulto Jovem
16.
Chin Med J (Engl) ; 134(16): 1967-1976, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34310400

RESUMO

BACKGROUND: Innovative coronavirus disease 2019 (COVID-19) vaccines, with elevated global manufacturing capacity, enhanced safety and efficacy, simplified dosing regimens, and distribution that is less cold chain-dependent, are still global imperatives for tackling the ongoing pandemic. A previous phase I trial indicated that the recombinant COVID-19 vaccine (V-01), which contains a fusion protein (IFN-PADRE-RBD-Fc dimer) as its antigen, is safe and well tolerated, capable of inducing rapid and robust immune responses, and warranted further testing in additional clinical trials. Herein, we aimed to assess the immunogenicity and safety of V-01, providing rationales of appropriate dose regimen for further efficacy study. METHODS: A randomized, double-blind, placebo-controlled phase II clinical trial was initiated at the Gaozhou Municipal Centre for Disease Control and Prevention (Guangdong, China) in March 2021. Both younger (n = 440; 18-59 years of age) and older (n = 440; ≥60 years of age) adult participants in this trial were sequentially recruited into two distinct groups: two-dose regimen group in which participants were randomized either to follow a 10 or 25 µg of V-01 or placebo given intramuscularly 21 days apart (allocation ratio, 3:3:1, n = 120, 120, 40 for each regimen, respectively), or one-dose regimen groups in which participants were randomized either to receive a single injection of 50 µg of V-01 or placebo (allocation ratio, 3:1, n = 120, 40, respectively). The primary immunogenicity endpoints were the geometric mean titers of neutralizing antibodies against live severe acute respiratory syndrome coronavirus 2, and specific binding antibodies to the receptor binding domain (RBD). The primary safety endpoint evaluation was the frequencies and percentages of overall adverse events (AEs) within 30 days after full immunization. RESULTS: V-01 provoked substantial immune responses in the two-dose group, achieving encouragingly high titers of neutralizing antibody and anti-RBD immunoglobulin, which peaked at day 35 (161.9 [95% confidence interval [CI]: 133.3-196.7] and 149.3 [95%CI: 123.9-179.9] in 10 and 25 µg V-01 group of younger adults, respectively; 111.6 [95%CI: 89.6-139.1] and 111.1 [95%CI: 89.2-138.4] in 10 and 25 µg V-01 group of older adults, respectively), and remained high at day 49 after a day-21 second dose; these levels significantly exceed those in convalescent serum from symptomatic COVID-19 patients (53.6, 95%CI: 31.3-91.7). Our preliminary data show that V-01 is safe and well tolerated, with reactogenicity predominantly being absent or mild in severity and only one vaccine-related grade 3 or worse AE being observed within 30 days. The older adult participants demonstrated a more favorable safety profile compared with those in the younger adult group: with AEs percentages of 19.2%, 25.8%, 17.5% in older adults vs. 34.2%, 23.3%, 26.7% in younger adults at the 10, 25 µg V-01 two-dose group, and 50 µg V-01 one-dose group, respectively. CONCLUSIONS: The vaccine candidate V-01 appears to be safe and immunogenic. The preliminary findings support the advancement of the two-dose, 10 µg V-01 regimen to a phase III trial for a large-scale population-based evaluation of safety and efficacy. TRIAL REGISTRATION: http://www.chictr.org.cn/index.aspx (No. ChiCTR2100045107, http://www.chictr.org.cn/showproj.aspx?proj=124702).


Assuntos
COVID-19 , Idoso , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Método Duplo-Cego , Humanos , Imunização Passiva , Proteínas Recombinantes de Fusão , SARS-CoV-2
17.
Chin Med Sci J ; 36(2): 135-149, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34231462

RESUMO

Osteoporosis as a systemic chronic skeletal disease is characterized by low bone mineral density and increased risk to osteoporotic fractures. Osteoporosis is prevalent in the middle-aged and elderly population, especially in the postmenopausal women. With population aging, osteoporosis has become a world-wide serious public health problem. Early recognition of the high-risk population followed by timely and efficient intervention and/or treatment is important for preventing osteoporotic fractures. In light of the high heritability and complex pathogenesis of osteoporosis, comprehensive consideration of vital biological/biochemical factors is necessary for accurate risk evaluation of fractures. For this purpose, we review recent research progress on molecules which can be applied to assess risk for osteoporotic fractures. Future integrative analyses and systematic evaluation of these molecules may facilitate developing novel methodologies and/or test strategies, i.e., biochips, for early recognition of osteoporosis, hence contributing to preventing osteoporotic fractures.

19.
Front Immunol ; 12: 708523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220870

RESUMO

Major advances have been made in understanding the dynamics of humoral immunity briefly after the acute coronavirus disease 2019 (COVID-19). However, knowledge concerning long-term kinetics of antibody responses in convalescent patients is limited. During a one-year period post symptom onset, we longitudinally collected 162 samples from 76 patients and quantified IgM and IgG antibodies recognizing the nucleocapsid (N) protein or the receptor binding domain (RBD) of the spike protein (S). After one year, approximately 90% of recovered patients still had detectable SARS-CoV-2-specific IgG antibodies recognizing N and RBD-S. Intriguingly, neutralizing activity was only detectable in ~43% of patients. When neutralization tests against the E484K-mutated variant of concern (VOC) B.1.351 (initially identified in South Africa) were performed among patients who neutralize the original virus, the capacity to neutralize was even further diminished to 22.6% of donors. Despite declining N- and S-specific IgG titers, a considerable fraction of recovered patients had detectable neutralizing activity one year after infection. However, neutralizing capacities, in particular against an E484K-mutated VOC were only detectable in a minority of patients one year after symptomatic COVID-19. Our findings shed light on the kinetics of long-term immune responses after natural SARS-CoV-2 infection and argue for vaccinations of individuals who experienced a natural infection to protect against emerging VOC.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , SARS-CoV-2/imunologia , Idoso , Formação de Anticorpos/imunologia , COVID-19/terapia , Convalescença , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo
20.
Viruses ; 13(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206476

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...