Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 20(1): 168, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32087697

RESUMO

BACKGROUND: Respiratory tract infection (RTI) in young children is a leading cause of morbidity and hospitalization worldwide. There are few studies assessing the performance for bronchoalveolar lavage fluid (BALF) versus oropharyngeal swab (OPS) specimens in microbiological findings for children with RTI. The primary purpose of this study was to compare the detection rates of OPS and paired BALF in detecting key respiratory pathogens using suspension microarray. METHODS: We collected paired OPS and BALF specimens from 76 hospitalized children with respiratory illness. The samples were tested simultaneously for 8 respiratory viruses and 5 bacteria by suspension microarray. RESULTS: Of 76 paired specimens, 62 patients (81.6%) had at least one pathogen. BALF and OPS identified respiratory pathogen infections in 57 (75%) and 49 (64.5%) patients, respectively (P > 0.05). The etiology analysis revealed that viruses were responsible for 53.7% of the patients, whereas bacteria accounted for 32.9% and Mycoplasma pneumoniae for 13.4%. The leading 5 pathogens identified were respiratory syncytial virus, Streptococcus pneumoniaee, Haemophilus influenzae, Mycoplasma pneumoniae and adenovirus, and they accounted for 74.2% of etiological fraction. For detection of any pathogen, the overall detection rate of BALF (81%) was marginally higher than that (69%) of OPS (p = 0.046). The differences in the frequency distribution and sensitivity for most pathogens detected by two sampling methods were not statistically significant. CONCLUSIONS: In this study, BALF and OPS had similar microbiological yields. Our results indicated the clinical value of OPS testing in pediatric patients with respiratory illness.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31995363

RESUMO

Dynamic tuning of terahertz (THz) wave has a great potential application as smart THz devices, such as switches, modulators, sensors, and so on. However, the realization of flexible THz modulation with high efficiency is rarely observed, which is nearly absent from the booming development and demands on flexible electronics. Here, we report a flexible THz modulation based on conductive polymer composites composed of thermoplastic polyurethane (TPU) and conductive particles (Ni). By designing the additive content of Ni particles, such a flexible layer exhibits resistivity change of 6-7 orders under tensile strain due to the formation of an electron-transport channel provided by the in situ evolution of the Ni network. It could be used to dynamically control the THz transmission with a giant modulation depth of around 96%, at a high strain operation (up to around 58.5%). Moreover, these characteristics are demonstrated to be available for highly tension sensitive THz spectroscopy and imaging. This work opens up a connection between flexible polymer-based composites and THz dynamic devices. It proposes an unprecedented flexible THz modulation with giant tuning efficiency and provides a scheme for contactless and passive tension sensors.

3.
Environ Pollut ; 258: 113658, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31838382

RESUMO

Microplastics pollution in the environment is closely determined by the surrounding industrial and human activities. In present study, we investigated microplastics in water and sediment samples collected from a textile industrial area in Shaoxing city, China. The abundance of microplastics varied from 2.1 to 71.0 items/L in surface water samples, and from 16.7 to 1323.3 items/kg (dw) in sediment samples. The polymer type was dominated by polyester both in water (95%) and sediment (79%) samples. The majority of the detected microplastics was predominantly colored fibers smaller than 1 mm in diameter. The high level of microplastic pollution detected in local freshwater and sediment environments was attributed to the production and trading activities of textile industries, for which severe regulations should be envisaged in the future to effectively reduce the local microplastic pollution.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31661365

RESUMO

Silver nanoparticles (AgNP) exhibit size and concentration dependent toxicity to terrestrial plants, especially crops. AgNP exposure could decrease seed germination, inhibit seedling growth, affect mass and length of roots and shoots. The phytotoxic pathway has been partly understood. Silver (as element, ion or AgNP) accumulates in roots/leaves and triggers the defense mechanism at cellular and tissue levels, which alters metabolism, antioxidant activities and related proteomic expression. Botanical changes (either increase or decrease) in response to AgNP exposure include reactive oxygen species generation, superoxide dismutase activities, H2O2 level, total chlorophyll, proline, carotenoid, ascorbate and glutathione contents, etc. Such processes lead to abnormal morphological changes, suppression of photosynthesis and/or transpiration, and other symptoms. Although neutral or beneficial effects are also reported depending on plant species, adverse effects dominate in majority of the studies. More in depth research is needed to confidently draw any conclusions and to guide legislation and regulations.

5.
J Phys Chem B ; 123(46): 9801-9808, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31644296

RESUMO

We investigate how isotopic labeling of the enzyme lactate dehydrogenase (LDH) affects its function. LDH is of special interest because there exists a line of residues spanning the protein that are involved in the transition state (TS) of the chemical reaction coordinate (so-called promoting vibration). Hence, studies have been carried out on this protein (as well as others) using labeled protein (so-called heavy protein) along with measurements of single turnover kcat yielding a KIE (=kcatlight/kcatheavy) aimed at understanding the effect of labeling generally and more specifically this line of residues. Here, it is shown that 13C, 15N, and 2H atom labeling of hhLDH (human heart) affects its internal structure which in turn affects its dynamics and catalytic mechanism. Spectral studies employing advanced FTIR difference spectroscopy show that the height of the electronic potential surface of the TS is lowered (probably by ground state destabilization) by labeling. Moreover, laser-induced T-jump relaxation kinetic spectroscopy shows that the microsecond to millisecond nuclear motions internal to the protein are affected by labeling. While the effects are small, they are sufficient to contribute to the observed KIE values as well or even more than promoting vibration effects.

6.
J Exp Bot ; 70(22): 6611-6619, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31625570

RESUMO

Members of the Orchidaceae, one of the largest families of flowering plants, evolved the crassulacean acid metabolism (CAM) photosynthesis strategy. It is thought that CAM triggers adaptive radiation into new niche spaces, yet very little is known about its origin and diversification on different continents. Here, we assess the prevalence of CAM in Dendrobium, which is one of the largest genera of flowering plants and found in a wide range of environments, from the high altitudes of the Himalayas to relatively arid habitats in Australia. Based on phylogenetic time trees, we estimated that CAM, as determined by δ 13C values less negative than -20.0‰, evolved independently at least eight times in Dendrobium. The oldest lineage appeared in the Asian clade during the middle Miocene, indicating the origin of CAM was associated with a pronounced climatic cooling that followed a period of aridity. Divergence of the four CAM lineages in the Asian clade appeared to be earlier than divergence of those in the Australasian clade. However, CAM species in the Asian clade are much less diverse (25.6%) than those in the Australasian clade (57.9%). These findings shed new light on CAM evolutionary history and the aridity levels of the paleoclimate on different continents.

7.
Acad Radiol ; 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31494003

RESUMO

RATIONALE AND OBJECTIVES: The purpose of this study was to establish and validate radiomics signatures based on ultrasound (US) medicine images to assess the biological behaviors of intrahepatic cholangiocarcinoma (ICC) in a noninvasive manner. MATERIALS AND METHODS: This study consisted of 128 ICC patients. We focused on evaluating six pathological features: microvascular invasion, perineural invasion, differentiation, Ki-67, vascular endothelial growth factor, and cytokeratin 7. Region of interest (ROI) of ICC was identified by manually plotting the tumor contour on the grayscale US image. We extracted radiomics features from medical US imaging. Then, dimensionality reduction methods and classifiers were used to develop radiomic signatures for evaluating six pathological features in ICC. Finally, independent validation datasets were used to assess the radiomic signatures performance. RESULTS: We extracted 1076 quantitative characteristic parameters on the US medicine images. Based on extracted radiomics features, the best performing radiomic signatures for evaluating microvascular invasion features were produced by hypothetical test + support vector machine (SVM), perineural invasion subgroup were least absolute shrinkage and selection operator + principal component analysis + support vector machine, differentiation subgroup were hypothetical test + decision tree, Ki-67 subgroup were hypothetical test + logistic regression, vascular endothelial growth factor subgroup were hypothetical test + Gradient Boosting Decision Tree (GBDT), and cytokeratin 7 subgroup were hypothetical test + bagging, respectively. CONCLUSION: Through the high-throughput radiomics analysis based on US medicine images, we proposed radiomics signatures that have moderate efficiency in predicting the biological behaviors of ICC noninvasively.

8.
Materials (Basel) ; 12(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416283

RESUMO

Fluorescence titration of methylene blue, rhodamine B and rhodamine 6G (R6G) by silver nanoparticle (AgNP) all resulted in an initial steep quenching curve followed with a sharp turn and a much flatter quenching curve. At the turn, there are about 200,000 dye molecules per a single AgNP, signifying self-assembly of approximately 36-layers of dye molecules on the surface of the AgNP to form a micelle-like structure. These fluorescence-quenching curves fit to a mathematical model with an exponential term due to molecular self-assembly on AgNP surface, or we termed it "self-assembly shielding effect", and a Stern-Volmer term (nanoparticle surface enhanced quenching). Such a "super-quenching" by AgNP can only be attributed to "pre-concentration" of the dye molecules on the nanoparticle surface that yields the formation of micelle-like self-assembly, resulting in great fluorescence quenching. Overall, the fluorescence quenching titration reveals three different types of interactions of dye molecules on AgNP surface: 1) self-assembly (methylene blue, rhodamine B and R6G), 2) absorption/tight interaction (tryptamine and fluorescein), and 3) loose interaction (eosin Y). We attribute the formation of micelle-like self-assembly of these three dye molecules on AgNP to their positive charge, possession of nitrogen atoms, and with relatively large and flat aromatic moieties.

9.
Environ Sci Technol ; 53(18): 10871-10879, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31415165

RESUMO

Manganese oxides are prominent candidates for the catalytic oxidation of volatile organic compounds (VOCs) or ambient decomposition of O3 individually. Here, we compared various preparation methods to create a defect-enriched Ag-MnOx nanocomposite that exhibits a remarkably multifunctional activity in VOC combustion and ozone decomposition. Ag+ ions were well-dispersed in the microtunnels of Ag-MnOx-H via hydrothermal replacement of the original K+ ions; this catalyst's benzene combustion efficiency (T90% = 216 °C at a space velocity of 90 000 mL h-1 g-1) was comparable to that of typical noble metal catalysts. Moreover, the decomposition of ozone over the Ag-MnOx-H catalyst (space velocity = 840 000 mL h-1 g-1) under a relative humidity of 60% was above 90%, indicating that it is a promising material for ozone elimination in practical application. The local structure results indicated that silver incorporation via the hydrothermal method facilitates the formation of nonstoichiometric defects in the MnOx matrix. The large number of active oxygen species related to O vacancies appeared to play critical roles in VOC combustion; moreover, the oxygen vacancies originating from O defects were also critical in O3 abatement. This work provides multifunctional catalysts for VOC combustion and ambient O3 decomposition and may assist with the rational design of MnOx catalysts for application in various conditions.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Catálise , Compostos de Manganês , Oxirredução , Óxidos , Prata
10.
Int J Pediatr Otorhinolaryngol ; 126: 109630, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442870

RESUMO

OBJECTIVES: More than 50% of congenital hearing loss is attributed to genetic factors. Data of gene mutation associated with hearing loss from large population studies in Chinese population are scarce. In this study, we conducted a comprehensive newborn genetic screening in China to establish the carrier frequency and mutation spectrum of deafness-associated genes. METHODS: A total of 53,033 newborns were screened for hearing defects associated mutations. Twenty hot spot mutations in GJB2, GJB3, SLC26A4 and mitochondria12S rRNA were examined using suspension array analysis. RESULTS: 14,185 newborns (26.75%) were identified with at least one mutated allele. 872 (1.64%) neonates carried homozygous mutations including 112 (0.21%) mitochondrial DNA homoplasmy, 228 (0.43%) were compound heterozygotes, and 11,985 (22.59%) were heterozygotes including 11 (0.02%) mitochondrial DNA heteroplasmy. Top five mutations included 109 G > A, 235 delC, 299-300 delAT in GJB2, IVS7-2 A > G in SLC26A4 and 1555 A > G in mitochondria12S rRNA. Notably, a total of 10,995 neonates (20.73%) carried 109 G > A in GJB2. Moreover, the allele frequencies of 109 G > A were detected 11.61% in Guangdong, 10.44% in Sichuan and 2.88% in Shandong, respectively, a significant difference in prevalence among these geographic regions (p<0.01). In addition, the high frequency of 109 G > A in GJB2 was confirmed by a TaqMan probe-based qPCR assay. Very recently, the ClinGen Hearing Loss Expert Panel reached a consensus and confirmed its pathogenic role in hearing impairment. CONCLUSION: We delineated the mutation profile of common deafness-causing genes in the Chinese population and highlighted the high prevalence of 109 G > A pathogenic mutation. Our study may facilitate early diagnosis/intervention and genetic counseling for hearing impairment in clinical practice.


Assuntos
Conexinas/genética , Surdez/genética , Testes Genéticos , Mutação , Triagem Neonatal , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Grupo com Ancestrais do Continente Asiático/genética , China/epidemiologia , Surdez/congênito , Surdez/epidemiologia , Feminino , Frequência do Gene , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Masculino , Mitocôndrias/genética , Prevalência , RNA Ribossômico/genética , Transportadores de Sulfato/genética
11.
J Phys Chem B ; 123(37): 7840-7851, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31437399

RESUMO

Yersinia Protein Tyrosine Phosphatase (YopH) is the most efficient enzyme among all known PTPases and relies on its catalytic loop movements for substrate binding and catalysis. Fluorescence, NMR, and UV resonance Raman (UVRR) techniques have been used to study the thermodynamic and dynamic properties of the loop motions. In this study, a computational approach based on the pathway refinement methods nudged elastic band (NEB) and harmonic Fourier beads (HFB) has been developed to provide structural interpretations for the experimentally observed kinetic processes. In this approach, the minimum potential energy pathways for the loop open/closure conformational changes were determined by NEB using a one-dimensional global coordinate. Two dimensional data analyses of the NEB results were performed as an efficient method to qualitatively evaluate the energetics of transitions along several specific physical coordinates. The free energy barriers for these transitions were then determined more precisely using the HFB method. Kinetic parameters were estimated from the energy barriers using transition state theory and compared against experimentally determined kinetic parameters. When the calculated energy barriers are calibrated by a simple "scaling factor", as have been done in our previous vibrational frequency calculations to explain the ligand frequency shift upon its binding to protein, it is possible to make structural interpretations of several observed enzyme dynamic rates. For example, the nanosecond kinetics observed by fluorescence anisotropy may be assigned to the translational motion of the catalytic loop and microsecond kinetics observed in fluorescence T-jump can be assigned to the loop backbone dihedral angle flipping. Furthermore, we can predict that a Trp354 conformational conversion associated with the loop movements would occur on the tens of nanoseconds time scale, to be verified by future UVRR T-jump studies.

12.
Thromb Res ; 182: 56-63, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450009

RESUMO

INTRODUCTION: Endotoxemia often results in systemic inflammatory response syndrome (SIRS), coagulation disturbance and acute lung injury (ALI), and such a condition is associated with the activation of platelets, leukocytes and vascular endothelial cells (VECs). P-selectin glycoprotein ligand 1 (PSGL-1) is a key regulatory molecule in the activation of platelets, leukocytes and VECs. However, it still remains largely unexplored whether PSGL-1 plays an important role in SIRS, coagulation dysfunction and ALI of endotoxemia. In the present study, we aimed to study the role of PSGL-1 in above-mentioned situations using endotoxemic mice. MATERIALS AND METHODS: An endotoxemia model was established in BALB/c mice via lipopolysaccharide (LPS) administration. Moreover, the mice were simultaneously injected with PSGL-1 antibody for intervention. The survival rate, morphologic changes of lung tissues, platelet-leukocyte adhesion, tissue factor expression on leukocytes, fibrinogen deposition in lung tissues, serum levels of inflammatory factors and the activation of VECs were determined. RESULTS: The results showed that the aggregation and recruitment of platelets and leukocytes in lung tissues, the expression of tissue factor on leukocytes, the serum levels of inflammatory factors, the activation of VECs, and the fibrinogen deposition in lung tissues were increased in endotoxemic mice, which were significantly alleviated by administration of PSGL-1 antibody. Moreover, blockade of PSGL-1 markedly increased survival rate, and alleviated coagulation disturbance and lung injury in endotoxemic mice. CONCLUSIONS: Taken together, PSGL-1 played an important role in pathogenesis of SIRS and coagulation dysfunction and ALI in endotoxemic mice.

13.
Soft Matter ; 15(25): 5128-5137, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31190048

RESUMO

The membrane wrapping and internalization of nanoparticles, such as viruses and drug nanocarriers, through clathrin-mediated endocytosis (CME) are vitally important for intracellular transport. During CME, the shape of the particle plays crucial roles in the determination of particle-membrane interactions, but much of the previous work has been focused on spherical particles. In this work, we develop a stochastic model to study the CME of ellipsoidal particles. In our model, the deformation of the membrane and wrapping of the nanoparticles are driven by the accumulation of clathrin lattices, which is stimulated by the ligand-receptor interactions. Using our model, we systematically investigate the effect of particle shape (ellipsoids with different aspect ratios) on the CME. Our results show three entry modes: tip-first, tilted, and laying-down modes, used by ellipsoidal nanoparticles for internalization depending on the aspect ratio. Certain ellipsoids are able to take multiple entry modes for internalization. Interestingly, the prolate ellipsoid with an aspect ratio of 0.42 can be internalized with a significantly reduced number of ligand-receptor bonds. Particles which can be internalized with fewer bonds are excellent candidates for transcellular drug delivery. Moreover, our results demonstrate that internalization of ellipsoids with intermediate aspect ratios is easier than that of particles with low and high aspect ratios. Our model and simulations provide critical mechanistic insights into CME of ellipsoidal particles, and represent a viable platform for optimal design of nanoparticles for targeted drug delivery applications.


Assuntos
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Modelos Biológicos , Nanopartículas , Cinética , Processos Estocásticos
14.
Chem Commun (Camb) ; 55(51): 7346-7349, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31169844

RESUMO

An efficient catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with four-membered ring-containing exocyclic alkenes has been developed, and either the exo or endo spirocyclic pyrrolidine-azetidine/oxe(thie)tane derivatives were diastereodivergently generated by employing Cu(i)/tBu-Phosferrox and a Cu(i)/N,O-ligand complex, respectively. Notably, various heteroatom-containing (N, O, S) exocyclic alkenes were found to be well-tolerated in this transformation.

15.
Nanoscale ; 11(23): 11227-11235, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31157808

RESUMO

Receptor-mediated transcytosis (RMT) is a fundamental mechanism for the transcellular transport of nanoparticles. RMT is a complex process, during which the nanoparticles actively interact with the membrane and the membrane profile undergoes extreme deformations for particle internalization and expulsion. In this work, we developed a stochastic model to study the endocytosis and exocytosis of nanoparticles across soft membranes. The model is based on the combination of a stochastic particle binding model with a membrane model, and accounts for both clathrin-mediated endocytosis for internalization and actin-mediated exocytosis for expulsion. Our results showed that nanoparticles must have certain avidity with enough ligand density and ligand-receptor binding affinity to be taken up, while too high avidity limited the particle release from the cell surface. We further explored the functional roles of actin during exocytosis, which has been a topic under active debate. Our simulations indicated that the membrane compression due to the actin induced tension tended to break the ligand-receptor bonds and to shrink the fusion pore. Therefore, an intermediate tension promoted the fusion pore expansion and nanoparticle release, while high tension prohibits particle release. Our model provides new and critical mechanistic insights into RMT, and represents a powerful platform for aiding the rational design of nanocarriers for controlled drug delivery.


Assuntos
Membrana Celular/metabolismo , Modelos Biológicos , Nanopartículas , Transcitose , Actinas/metabolismo , Animais , Clatrina/metabolismo , Humanos , Processos Estocásticos , Tensão Superficial
16.
Inflammation ; 42(4): 1504-1510, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102123

RESUMO

In the present study, we aimed to investigate the effects of puerarin on the hyperpermeability of vascular endothelial cells induced by lipopolysaccharide (LPS) and its underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were pre-incubated with puerarin (25, 50, and 100 µM) for 1 h, and then exposed to LPS (1 µg/mL). The monolayer permeability of endothelial cells was assessed by measuring the paracellular flux of FITC-dextran 40,000 (FD40). The expression of vascular endothelial cadherin (VE-cadherin) in HUVECs was examined by Western blotting analysis. A total of 18 mice were randomly assigned into three groups as follows: control group, LPS group, and puerarin group. The pulmonary W/D ratio (wet-to-dry weight ratios) was calculated, and the lung morphology was examined. The levels of TNF-α and IL-1ß in cell supernatant and mouse serum were determined by ELISA. Compared with the control group, LPS obviously increased the flux of FD40 and the monolayer permeability, raised the levels of TNF-α and IL-1ß in cell supernatant, and reduced the VE-cadherin expression in HUVECs. However, puerarin (25, 50, and 100 µM) was able to relieve such LPS-induced increase in flux of FD40 and then reduce the hyperpermeability. Puerarin decreased the levels of TNF-α and IL-1ß in cell supernatant and increased the VE-cadherin expression in HUVECs (P < 0.05). Moreover, LPS obviously increased the levels of TNF-α and IL-1ß in mouse serum and elevated the pulmonary W/D ratios, resulting in lung injury. However, all of above-mentioned LPS-induced changes were improved by puerarin pre-treatment. Puerarin could alleviate LPS-induced hyperpermeability in endothelial cells via preventing downregulation of endothelial cadherin.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Isoflavonas/farmacologia , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-1beta/análise , Interleucina-1beta/metabolismo , Isoflavonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos , Substâncias Protetoras , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatadores
17.
Environ Sci Pollut Res Int ; 26(18): 18343-18353, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31044376

RESUMO

ZnAl-layered double hydroxide-loaded banana straw biochar (ZnAl-LDH-BSB) was prepared via the hydrothermal method, and the efficient phosphorus removal agent ZnAl-LDO-BSB was obtained by calcination at 500 °C. Based on the ZnAl-LDO-BSB adsorption characteristics, the adsorption mechanism was evaluated via TG/DTA, FTIR, XRD, SEM, HRTEM, and other characterization methods. The results showed that the ZnAl-LDO-BSB assembled into microspheres with typical hexagonal lamellar structures and presented good thermal stability. The adsorption of total phosphate (TP) by ZnAl-LDO-BSB conforms to the Langmuir model, and the theoretical maximum adsorption capacity is 185.19 mg g-1. The adsorption kinetics were in accordance with the second-order kinetic model, and the anion influence on TP adsorption followed the order CO32- > SO42- > NO3-. The combination of zeta potential measurements with the FTIR, XRD, SEM, HRTEM, and XPS results suggested that ZnAl-LDO-BSB adsorbs TP mainly by electrostatic adsorption, surface coordination, and anion intercalation. Graphical abstract.


Assuntos
Alumínio/química , Carvão Vegetal , Musa , Fosfatos/química , Águas Residuárias/química , Purificação da Água/métodos , Zinco/química , Adsorção , Hidróxidos/química , Cinética , Fosfatos/isolamento & purificação
18.
Front Oncol ; 9: 244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024846

RESUMO

Purpose: To determine whether there are differences in bone marrow tolerance to chemoradiotherapy (CRT) between two chemotherapy regimens according to FOWARC protocol and how chemotherapy regimens affect radiation dose parameters and normal tissue complication probability (NTCP) modelings that correlate with acute hematologic toxicity (HT) in rectal cancer patients treated with intensity modulated radiation therapy (IMRT) and concurrent chemotherapy. Materials and Methods: One hundred and twenty-eight rectal cancer patients who received IMRT from a single institution were recruited from Chinese FOWARC multicenter, open-label, randomized phase III trial. We assessed HT in these patients who were separated into two groups: Oxaliplatin (L-OHP) + 5- fluorouracil (5FU) (FOLFOX, 70 of 128) and 5FU (58 of 128). The pelvic bone marrow (PBM) was divided into three subsites: lumbosacral spine (LSS), ilium (I), and lower pelvic (LP). The endpoint for HT was grade ≥3 (HT3+) and grade ≥2 (HT2+) leukopenia, neutropenia, anemia and thrombocytopenia. Logistic regression was used to analyze the association between HT2+/HT3+ and dosimetric parameters. Lyman-Kutcher-Burman (LKB) model was used to calculate NTCP. Results: Sixty-eight patients experienced HT2+: 22 of 58 (37.9%) 5FU and 46 of 70 (65.7%) FOLFOX (p = 0.008), while twenty-six patients experienced HT3+: 4 of 58 (6.9%) 5FU and 22 of 70 (31.4%) FOLFOX (p = 0.016). PBM and LP dosimetric parameters were correlated with HT2+ in the 5FU group but not in the FOLFOX group. No PBM dosimetric parameters were correlated with HT3+ in both groups. For PBM, NTCP at HT3+ was 0.32 in FOLFOX group relative to 0.10 in 5FU subset (p < 0.05). Conclusion: Patients receiving FOLFOX have lower BM tolerance to CRT than those receiving 5FU. Low-dose radiation to the PBM is predictive for HT2+ in patients who received 5FU. NTCP modeling in FOLFOX group predicts much higher risk of HT3+ than 5FU group.

19.
J Phys Chem B ; 123(19): 4230-4241, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31013084

RESUMO

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) via an enediol(ate) intermediate. The active-site residue Glu165 serves as the catalytic base during catalysis. It abstracts a proton from C1 carbon of DHAP to form the reaction intermediate and donates a proton to C2 carbon of the intermediate to form product GAP. Our difference Fourier transform infrared spectroscopy studies on the yeast TIM (YeTIM)/phosphate complex revealed a C═O stretch band at 1706 cm-1 from the protonated Glu165 carboxyl group at pH 7.5, indicating that the p Ka of the catalytic base is increased by >3.0 pH units upon phosphate binding, and that the Glu165 carboxyl environment in the complex is still hydrophilic in spite of the increased p Ka. Hence, the results show that the binding of the phosphodianion group is part of the activation mechanism which involves the p Ka elevation of the catalytic base Glu165. The deprotonation kinetics of Glu165 in the µs to ms time range were determined via infrared (IR) T-jump studies on the YeTIM/phosphate and ("heavy enzyme") [U-13C,-15N]YeTIM/phosphate complexes. The slower deprotonation kinetics in the ms time scale is due to phosphate dissociation modulated by the loop motion, which slows down by enzyme mass increase to show a normal heavy enzyme kinetic isotope effect (KIE) ∼1.2 (i.e., slower rate in the heavy enzyme). The faster deprotonation kinetics in the tens of µs time scale is assigned to temperature-induced p Ka decrease, while phosphate is still bound, and it shows an inverse heavy enzyme KIE ∼0.89 (faster rate in the heavy enzyme). The IR static and T-jump spectroscopy provides atomic-level resolution of the catalytic mechanism because of its ability to directly observe the bond breaking/forming process.

20.
Nucleic Acids Res ; 47(5): 2190-2204, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30759259

RESUMO

Nucleic acid mimics of fluorescent proteins can be valuable tools to locate and image functional biomolecules in cells. Stacking between the internal G-quartet, formed in the mimics, and the exogenous fluorophore probes constitutes the basis for fluorescence emission. The precision of recognition depends upon probes selectively targeting the specific G-quadruplex in the mimics. However, the design of probes recognizing a G-quadruplex with high selectivity in vitro and in vivo remains a challenge. Through structure-based screening and optimization, we identified a light-up fluorescent probe, 9CI that selectively recognizes c-MYC Pu22 G-quadruplex both in vitro and ex vivo. Upon binding, the biocompatible probe emits both blue and green fluorescence with the excitation at 405 nm. With 9CI and c-MYC Pu22 G-quadruplex complex as the fluorescent response core, a DNA mimic of fluorescent proteins was constructed, which succeeded in locating a functional aptamer on the cellular periphery. The recognition mechanism analysis suggested the high selectivity and strong fluorescence response was attributed to the entire recognition process consisting of the kinetic match, dynamic interaction, and the final stacking. This study implies both the single stacking state and the dynamic recognition process are crucial for designing fluorescent probes or ligands with high selectivity for a specific G-quadruplex structure.


Assuntos
Corantes Fluorescentes/análise , Quadruplex G , Genes myc/genética , Sondas Moleculares/análise , Linhagem Celular Tumoral , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA