Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(36): 10648-10656, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463101

RESUMO

2-Threityl-thiazolidine-4-carboxylic acid (TTCA), a nonvolatile precursor of flavor and color, is considered to be more stable than its isomeric Amadori compound (ARP). The degradation behavior of TTCA favors higher temperatures and pH. In order to adjust and control the thermal degradation of TTCA to improve its food processing adaptability, a TTCA-Xyl thermal reaction model was constructed to explore the effect of extra-added Xyl on the thermal degradation behavior of TTCA. The results confirmed that the extra-added Xyl was involved in the degradation pathway of TTCA and accelerated its depletion, thus promoting the formation of characteristic downstream products of TTCA including some α-dicarbonyl compounds, and consequently accelerating the browning formation. The isotope-labeling technique was further applied to confirm that the added Xyl could trap the Cys released from the decomposition of ARP and formed additional TTCA, which could promote the movement of chemical equilibrium and gradually accelerate the degradation rate of TTCA as well as melanoidins formation. The higher pH value could even promote this phenomenon.


Assuntos
Reação de Maillard , Xilose , Cisteína , Tiazolidinas
2.
J Agric Food Chem ; 69(17): 5167-5177, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33891395

RESUMO

The effect of additional dl-methionine (Met) on the thermal degradation of a methionine-glucose-derived Amadori rearrangement product (MG-ARP) was investigated under different reaction conditions. The resulting color formation and changes in the concentrations of MG-ARP, Met, and α-dicarbonyl compounds were investigated. Additional Met did not affect the degradation rate of MG-ARP but got involved in subsequent reactions and resulted in a decrease in the contents of C6-α-dicarbonyl compounds. During MG-ARP degradation, the formation of glyoxal (GO) and methylglyoxal (MGO) was facilitated by additional Met, through retro-aldolization reaction of C6-α-dicarbonyl compounds. This effect of Met addition was dependent on the reaction temperature, and the consistent conclusion could be made in a buffer system. The improvement of GO and MGO formation as color precursors caused by the additional Met contributed to the acceleration of browning formation.


Assuntos
Reação de Maillard , Metionina , Glucose , Glioxal , Aldeído Pirúvico
4.
Sci Adv ; 6(43)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33097534

RESUMO

Successful implementation of hot carrier solar cells requires preserving high carrier temperature as carriers migrate through the active layer. Here, we demonstrated that addition of alkali cations in hybrid organic-inorganic lead halide perovskites led to substantially elevated carrier temperature, reduced threshold for phonon bottleneck, and enhanced hot carrier transport. The synergetic effects from the Rb, Cs, and K cations result in ~900 K increase in the effective carrier temperature at a carrier density around 1018 cm-3 with an excitation 1.45 eV above the bandgap. In the doped thin films, the protected hot carriers migrate 100 s of nanometers longer than the undoped sample as imaged by ultrafast microscopy. We attributed these improvements to the relaxation of lattice strain and passivation of halide vacancies by alkali cations based on x-ray structural characterizations and first principles calculations.

5.
J Agric Food Chem ; 68(39): 10884-10892, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32902964

RESUMO

2-Threityl-thiazolidine-4-carboxylic acid (TTCA) was found to be the predominant product rather than the Amadori rearrangement product (ARP) during the formation of xylose-cysteine-derived (Xyl-Cys-derived) Maillard reaction intermediates (MRIs) through a thermal reaction coupled with vacuum dehydration. To regulate the existence forms of Xyl-Cys-derived MRIs, an effective method carried out by pH adjustment during high-temperature instantaneous dehydration through spray-drying was proposed in this research to promote the conversion from TTCA to ARP. The increased inlet air temperature of spray-drying could properly facilitate the shift of chemical equilibrium between the MRIs and promote the transformation from TTCA to ARP while raising the total yield of TA (TTCA + ARP). The conversion to ARP was increased to 20.83% at 190 °C of hot blast compared to the product without spray-drying (6.03%). The conversion from TTCA to ARP was further facilitated in the pH range of 7.5-9.5. When the pH of the aqueous reactants was adjusted to 9.5, the equilibrium conversion to ARP was improved to 47.23% after spray-drying, which accounted for 59.48% of the TA formation. Accordingly, MRIs with different TTCA/ARP proportions could be selectively obtained by pH adjustment of the stock solution during high-temperature instantaneous dehydration of spray-drying.


Assuntos
Cisteína/química , Produtos Finais de Glicação Avançada/química , Tiazolidinas/química , Xilose/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Água/química
6.
J Am Chem Soc ; 142(38): 16254-16264, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845129

RESUMO

Understanding semiconductor surface properties and manipulating them chemically are critical for improving their performance in optoelectronic devices. Hybrid halide perovskites have emerged as an exciting class of highly efficient solar materials; however, their device performance could be limited by undesirable surface properties that impede carrier transport and induce recombination. Here we show that surface functionalization of methylammonium lead iodide (MAPbI3) perovskite with phenethylammonium iodide (PEAI), a commonly employed spacer cation in two-dimensional halide perovskites, can enhance carrier diffusion in the near-surface regions and reduce defect density by more than 1 order of magnitude. Using transient transmission and reflection microscopy, we selectively imaged the transport of the carriers near the (001) surface and in the bulk for single-crystal MAPbI3 microplates. The surface functionalization increases the diffusion coefficient of the carriers in the 40 nm subsurface region from ∼0.6 cm2 s-1 to ∼1.0 cm2 s-1, similar to the value for bulk carriers. These results suggest the PEA ligands are effective in reducing surface defect and phonon scattering and shed light on the mechanisms for enhancing photophysical properties and improving solar cell efficiency.

7.
Nat Mater ; 19(6): 617-623, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32393806

RESUMO

The nanoscale periodic potentials introduced by moiré patterns in semiconducting van der Waals heterostructures have emerged as a platform for designing exciton superlattices. However, our understanding of the motion of excitons in moiré potentials is still limited. Here we investigated interlayer exciton dynamics and transport in WS2-WSe2 heterobilayers in time, space and momentum domains using transient absorption microscopy combined with first-principles calculations. We found that the exciton motion is modulated by twist-angle-dependent moiré potentials around 100 meV and deviates from normal diffusion due to the interplay between the moiré potentials and strong exciton-exciton interactions. Our experimental results verified the theoretical prediction of energetically favourable K-Q interlayer excitons and showed exciton-population dynamics that are controlled by the twist-angle-dependent energy difference between the K-Q and K-K excitons. These results form a basis to investigate exciton and spin transport in van der Waals heterostructures, with implications for the design of quantum communication devices.

8.
Nat Commun ; 11(1): 664, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005840

RESUMO

Two-dimensional hybrid organic-inorganic perovskites with strongly bound excitons and tunable structures are desirable for optoelectronic applications. Exciton transport and annihilation are two key processes in determining device efficiencies; however, a thorough understanding of these processes is hindered by that annihilation rates are often convoluted with exciton diffusion constants. Here we employ transient absorption microscopy to disentangle quantum-well-thickness-dependent exciton diffusion and annihilation in two-dimensional perovskites, unraveling the key role of electron-hole interactions and dielectric screening. The exciton diffusion constant is found to increase with quantum-well thickness, ranging from 0.06 ± 0.03 to 0.34 ± 0.03 cm2 s-1, which leads to long-range exciton diffusion over hundreds of nanometers. The exciton annihilation rates are more than one order of magnitude lower than those found in the monolayers of transition metal dichalcogenides. The combination of long-range exciton transport and slow annihilation highlights the unique attributes of two-dimensional perovskites as an exciting class of optoelectronic materials.

9.
J Chem Phys ; 152(4): 044711, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007060

RESUMO

Rational design of heterojunctions using nanostructured materials is a useful strategy for achieving efficient interfacial charge separation in photovoltaics. Heterojunctions can be constructed between the organic ligands and the inorganic layers in two-dimensional perovskites, taking advantage of their highly programmable structures. Here, we investigate charge transfer and recombination at the interface between the thiophene-based semiconducting ligands and the lead halide inorganic sublattices using time-resolved photoluminescence and transient reflection spectroscopy in single two-dimensional perovskite crystals. These measurements demonstrate the charge transfer time around 10 ps and long-lived charge-separated state over the nanosecond time scale in two-dimensional ligand-perovskite heterostructures. The efficient charge transfer processes coupled with slow charge recombination suggest the potential for improving exciton dissociation and charge transport in two-dimensional perovskite solar cells.

10.
Nat Chem ; 11(12): 1151-1157, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31712613

RESUMO

Semiconductor quantum-well structures and superlattices are key building blocks in modern optoelectronics, but it is difficult to simultaneously realize defect-free epitaxial growth while fine tuning the chemical composition, layer thickness and band structure of each layer to achieve the desired performance. Here we demonstrate the modulation of the electronic structure-and consequently the optical properties-of organic semiconducting building blocks that are incorporated between the layers of perovskites through a facile solution processing step. Self-aggregation of the conjugated organic molecules is suppressed by functionalization with sterically demanding groups and single crystalline organic-perovskite hybrid quantum wells (down to one-unit-cell thick) are obtained. The energy and charge transfers between adjacent organic and inorganic layers are shown to be fast and efficient, owing to the atomically flat interface and ultrasmall interlayer distance of the perovskite materials. The resulting two-dimensional hybrid perovskites are very stable due to protection given by the bulky hydrophobic organic groups.

11.
ACS Nano ; 13(2): 1635-1644, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30812095

RESUMO

Edges of two-dimensional (2D) halide perovskites are found to exhibit unusual properties such as enhanced photoluminescence lifetime and reduced photoluminescence emission energy. Here, we report the formation mechanism and the dynamic nature of edge states on exfoliated 2D halide perovskite thin crystals. In contrast to other 2D materials, the edge states in 2D perovskites are extrinsic and can be triggered by moisture with a concentration as low as ∼0.5 ppm. High-resolution atomic force microscopy and transmission electron microscopy characterizations reveal the width of the low-energy states is ∼40 nm wide. A temperature-dependent photoluminescence study suggests the edge states are a combination of several lower-energy states. Importantly, we demonstrate that the charge carriers on the dynamically formed edge states are not only long-lived but also highly mobile and can be conducted along the edges effectively with high mobilities of 5.4-7.0 cm2 V-1 s-1. This work provides significant insights on the origin of the edge states in 2D perovskites and provides routes to manipulate their optical and electrical properties through controlling their edges.

12.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585311

RESUMO

Controllable synthesis of carbon nanotubes (CNTs) is of great importance in its further application, which attracts broad attention. As growth and etching are the two sides in the process of material crystallography and the control of the competition between them forms the foundation for modern technology of materials design and manufacture, the understanding on etching process of carbon nanotubes is still very unclear because technically it is of great challenge to characterize the dynamics in such small one-dimensional (1D) scale. Here the real-time investigation on the etching process of CNTs is reported, by the hot-wall chemical reactor equipped with a polarized optical microscope. It is discovered that the CNT etching behavior in air is totally of random, including the etching sites, termination sites, and structure dependence. Combining with the dynamic simulation, it is revealed that the random behavior reflects the unique "self-termination" phenomenon. A structure-independent etching propagation barrier of 2.4 eV is also obtained, which indicates that the etching propagation process still follows the conventional Kinetic Wulff construction theory. The results represent the new knowledge on the etching process in carbon nanotube and can contribute to its selective enrichment. Furthermore, the "self-termination" phenomenon may be a universal behavior in 1D process.

13.
Nature ; 543(7644): 234-238, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28199307

RESUMO

The semiconductor industry is increasingly of the view that Moore's law-which predicts the biennial doubling of the number of transistors per microprocessor chip-is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.

14.
J Am Chem Soc ; 138(39): 12723-12726, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27654304

RESUMO

Small diameter single-walled carbon nanotube (SWNT) arrays with larger bandgap are more desirable as near-infrared optical absorbers for the fabrication of high performance photovoltaic and photodetector devices. We report herein a rational approach to selective growth of well-aligned subnanometer diameter (∼84% between 0.75 and 0.95 nm) SWNT arrays with a density of 0.3-0.5 tubes/µm on quartz surfaces using solid Mo2C catalysts for short-time growth by low carbon feeding in hydrogen-free CVD. These subnanometer diameter SWNTs have a narrow chirality distribution (the ratio of (8,4), (8,5) and (7,6) is higher than 73%). During nanotube growth, only small size Mo nanoparticles are carbonized into stable Mo2C for catalyzing the growth of SWNTs through low carbon feeding rate over short time in the hydrogen-free environment, whereas larger catalysts are inactive due to underfeeding. Meanwhile, solid Mo2C catalysts are effective in reducing the chirality distributions of the as-grown SWNTs. Additionally, combining an annealing process after loading catalyst on the sapphire substrates, the average density is increased to ∼15 tubes/µm while maintaining small diameter and narrow chirality distribution. Our results offer more choices for structurally controlled growth of aligned-SWNTs, with potential applications in nanoelectronics.

15.
Adv Mater ; 28(10): 2018-23, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26766418

RESUMO

Optical multicolor imaging is used as a high-throughput statistical tool to determine the structure information of horizontally aligned carbon nanotube arrays on various substrates and in diverse environments. This high-throughput ability is achieved through the direct use of optical image information and an over 10-fold enhancement of the optical contrast by polarization manipulation.

16.
Adv Mater ; 28(1): 168-73, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26551876

RESUMO

Robust superhydrophobic foam is fabricated by combining an ordered graphdiyne-based hierarchical structure with a low-surface-energy coating. This foam shows not only superhydrophobicity both in air (≈160.1°) and in oil (≈171.0°), but also high resistance toward abrasion cycles. Owing to its 3D porous structures and numerous superhydrophobic surfaces, it can easily separate oil from water with high efficiency and good recyclability.

17.
Adv Mater ; 28(5): 936-42, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26618329

RESUMO

Microscopic dimensions engineering is proposed to devise a series of 3D superhydrophobic substrates with microstructures of different dimensions. Combined theoretical modeling and experiments give the relationship of surface roughness and superhydrophobic properties, important for guiding the design of superior superwettable materials for water remediation and other uses.

18.
J Am Chem Soc ; 138(1): 300-5, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26669826

RESUMO

The striking in-plane anisotropy remains one of the most intriguing properties for the newly rediscovered black phosphorus (BP) 2D crystals. However, because of its rather low-energy band gap, the optical anisotropy of few-layer BP has been primarily investigated in the near-infrared (NIR) regime. Moreover, the essential physics that determine the intrinsic anisotropic optical property of few-layer BP, which is of great importance for practical applications in optical and optoelectronic devices, are still in the fancy of theory. Herein, we report the direct observation of the optical anisotropy of few-layer BP in the visible regime simply by using polarized optical microscopy. On the basis of the Fresnel equation, the intrinsic anisotropic complex refractive indices (n-iκ) in the visible regime (480-650 nm) were experimentally obtained for the first time using the anisotropic optical contrast spectra. Our findings not only provide a convenient approach to measure the optical constants of 2D layered materials but also suggest a possibility to design novel BP-based photonic devices such as atom-thick light modulators, including linear polarizer, phase plate, and optical compensator in a broad spectral range extending to the visible window.

19.
Acc Chem Res ; 48(7): 1862-70, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26056861

RESUMO

Surface enhanced Raman scattering (SERS) is a popular technique to detect the molecules with high selectivity and sensitivity. It has been developed for 40 years, and many reviews have been published to summarize the progress in SERS. Nevertheless, how to make the SERS signals repeatable and quantitative and how to have deeper understanding of the chemical enhancement mechanism are two big challenges. A strategy to target these issues is to develop a Raman enhancement substrate that is flat and nonmetal to replace the conventional rough and metal SERS substrate. At the same time, the newly developed substrate should have a strong interaction with the adsorbate molecules to guarantee strong chemical enhancement. The flatness of the surface allows better control of the molecular distribution and configuration, while the nonmetal surface avoids disturbance of the electromagnetic mechanism. Recently, graphene and other two-dimensional (2D) materials, which have an ideal flat surface and strong chemical interaction with plenty of organic molecules, were developed to be used as Raman enhancement substrates, which can light up the Raman signals of the molecules, and these substrates were demonstrated to be a promising for microspecies or trace species detection. This effect was named "graphene enhanced Raman scattering (GERS)". The GERS technique offers significant advantages for studying molecular vibrations due to the ultraflat and chemically inert 2D surfaces, which are newly available, especially in developing a quantitative and repeatable signal enhancement technique, complementary to SERS. Moreover, GERS is a chemical mechanism dominated effect, which offers a valuable model to study the details of the chemical mechanism. In this Account, we summarize the systematic studies exploring the character of GERS. In addition, as a practical technique, the combination of GERS with a metal substrate incorporates the advantages from both conventional SERS and GERS. The introduction of graphene to the Raman enhancement substrate extended SERS applications in a more controllable and quantitative way. Looking to the future, we expect the combination of the SERS concept with the GERS technology to lead to the solution of some important issues in chemical dynamics and in biological processes monitoring.


Assuntos
Grafite/química , Análise Espectral Raman , Propriedades de Superfície
20.
ACS Nano ; 8(7): 7130-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24884059

RESUMO

Two-dimensional transition-metal dichalcogenide alloys have attracted intense attention due to their tunable band gaps. In the present work, photoluminescence, Raman scattering, and electrical transport properties of monolayer and few-layer molybdenum tungsten diselenide alloys (Mo1-xWxSe2, 0 ≤ x ≤ 1) are systematically investigated. The strong photoluminescence emissions from Mo1-xWxSe2 monolayers indicate composition-tunable direct band gaps (from 1.56 to 1.65 eV), while weak and broad emissions from the bilayers indicate indirect band gaps. The first-order Raman modes are assigned by polarized Raman spectroscopy. Second-order Raman modes are assigned according to its frequencies. As composition changes in Mo1-xWxSe2 monolayers and few layers, the out-of-plane A1g mode showed one-mode behavior, while B2g(1) (only observed in few layers), in-plane E2g(1), and all observed second-order Raman modes showed two-mode behaviors. Electrical transport measurement revealed n-type semiconducting transport behavior with a high on/off ratio (>10(5)) for Mo1-xWxSe2 monolayers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...