Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 11(16): 8112-8128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335983

RESUMO

The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glicoproteínas/genética , Humanos , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Eur J Pharmacol ; 908: 174353, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34274339

RESUMO

The purpose of this study was to investigate the role of glycyrrhizic acid (GA) in regulating myocardial ischemia-reperfusion injury (MIRI) in rats as well as the underlying mechanism. H9c2 cells were subjected to hypoxia/re-oxygenation (H/R) to mimic the MIRI in vitro, while a rat model of ischemia-reperfusion (I/R) was constructed by occlusion of the left anterior descending coronary artery for 0.5 h followed by 2 h of reperfusion. While flow cytometry and TUNEL assay were performed to analyze apoptosis in cells and myocardial tissue, echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were conducted to evaluate cardiac function and pathological changes, respectively. The levels of serum CK, CK-MB, LDH, AST, TNF-α, and IL-6 as well as the contents of MDA and SOD in tissues were measured by ELISA, while Western blot analysis was performed to detect the expression of endoplasmic reticulum stress (ERS)-related proteins. GA treatment significantly reduced apoptosis in H9c2 cells, while it alleviated left ventricular dysfunction, fibrosis and myocardial apoptosis, down-regulated the levels of CK, CK-MB, LDH, AST, TNF-α, IL-6, and MDA, and up-regulated SOD levels in I/R rats. Moreover, GA treatment led to a decrease in the expression of CHOP, GRP78, and p-PERK in both H/R cells and I/R rats. This study demonstrates that cardioprotective role of GA in MIRI may involve the attenuation of ERS-induced apoptosis and inflammation, potentially providing an alternative strategy for intervention of MIRI.

3.
Stem Cell Res ; 38: 101464, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31176915

RESUMO

The in vitro expansion of endothelial progenitor cells (EPCs) is necessary for obtaining sufficient amounts of cells for clinical applications. However, EPC expansion is conventionally carried out under non-physiologic oxygen concentrations (normoxia, ~20% O2). We compared the effects of normoxic and hypoxic culture on the stemness of expanded EPCs. Human EPCs were cultured under hypoxia (1% O2) or normoxia (~20% O2), respectively. Cell proliferation, colony formation, in vitro angiogenesis, and the migration ability of the expanded EPCs were compared. To explore the underlying mechanism, whole transcriptome RNA sequencing (RNA-seq) was also performed to select differentially expressed genes (DEGs), which were then partially validated by western blotting. EPCs cultured under normoxia showed reduced proliferation, colony formation, in vitro angiogenesis, and migration abilities and a higher proportion of senescent cells compared with those cultured under hypoxia. A total of 48 DEGs were identified by transcriptome RNA-seq. Further bioinformatics analysis revealed that six pathways were enriched, among which the p53 signaling pathway. Finally, we confirmed the differential expression of the p53 pathway by Western blot analysis. Compared with hypoxia, normoxia is not favorable for maintaining the stemness of human EPCs. Several signaling pathways, including the p53 signaling pathway implicate in reducing stemness of EPCs under normoxia.


Assuntos
Proliferação de Células , Senescência Celular , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Adulto , Idoso , Hipóxia Celular , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Mol Ther ; 26(4): 1066-1081, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29525743

RESUMO

This study aimed to identify mechanisms by which microRNA 296-3p (miR-296-3p) functions as a tumor suppressor to restrain nasopharyngeal carcinoma (NPC) cell growth, metastasis, and chemoresistance. Mechanistic studies revealed that miR-296-3p negatively regulated by nicotine directly targets the oncogenic protein mitogen-activated protein kinase-activated protein kinase-2 (Mapkapk2) (MK2). Suppression of MK2 downregulated Ras/Braf/Erk/Mek/c-Myc and phosphoinositide-3-kinase (PI3K)/Akt/c-Myc signaling and promoted cytoplasmic translocation of c-Myc, which activated miR-296-3p expression by a feedback loop. This ultimately inhibited cell cycle progression, epithelial-to-mesenchymal transition (EMT), and chemoresistance of NPC. In addition, nicotine as a key component of tobacco was observed to suppress miR-296-3p and thus elevate MK2 expression by inducing PI3K/Akt/c-Myc signaling. In clinical samples, reduced miR-296-3p as an unfavorable factor was inversely correlated with MK2 and c-Myc expression. These results reveal a novel mechanism by which miR-296-3p negatively regulated by nicotine directly targets MK2-induced Ras/Braf/Erk/Mek/c-Myc or PI3K/AKT/c-Myc signaling to stimulate its own expression and suppress NPC cell proliferation and metastasis. miR-296-3p may thus serve as a therapeutic target to reverse chemotherapy resistance of NPC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , Nicotina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regiões 3' não Traduzidas , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Expressão Ectópica do Gene , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...