Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(38): e2205677, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35924314

RESUMO

The lithium (Li)-metal anode offers a promising solution for high-energy-density lithium-metal batteries (LMBs). However, the significant volume expansion of the Li metal during charging results in poor cycling stability as a result of the dendritic deposition and broken solid electrolyte interphase. Herein, a facile one-step roll-to-roll fabrication of a zero-volume-expansion Li-metal-composite anode (zeroVE-Li) is proposed to realize high-energy-density LMBs with outstanding electrochemical and mechanical stability. The zeroVE-Li possesses a sandwich-like trilayer structure, which consists of an upper electron-insulating layer and a bottom lithiophilic layer that synergistically guides the Li deposition from the bottom up, and a middle porous layer that eliminates volume expansion. This sandwich structure eliminates dendrite formation, prevents volume change during cycling, and provides outstanding flexibility to the Li-metal anode even at a practical areal capacity over 3.0 mAh cm-2 . Pairing zeroVE-Li with a commercial NMC811 or LCO cathode, flexible LMBs that offer a record-breaking figure of merit (FOM, 45.6), large whole-cell energy density (375 Wh L-1 , based on the volume of the anode, separator, cathode, and package), high-capacity retention (> 99.8% per cycle), and remarkable mechanical robustness under practical conditions are demonstrated.

2.
Small ; 18(8): e2106427, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34889053

RESUMO

Lithium (Li) metal batteries (LMBs) face huge challenges to achieve long cycling life at wide temperature range owing to the severe dendrite growth at subambient temperature and the intense side reactions with electrolyte at high temperature. Herein, an ultrathin LiBO2 layer with an extremely high Young's modulus of 8.0 GPa is constructed on Li anode via an in situ reaction between Li metal and 4,4,5,5-tetramethyl-1,3,2-dioxa-borolane (TDB) to form LiBO2 @Li anode, which presents two times higher exchange current density than pristine Li anode. The LiBO2 layer presents a strong absorption to Li ions and greatly improves the interfacial dynamics of Li-ion migration, which induces homogenous lithium nucleation and deposition to form a dense lithium layer. Consequently, the Li dendrite growth during cycling at subambient temperature and the side reactions with electrolyte at high temperature are simultaneously suppressed. The LiBO2 @Li/LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) full batteries with limited Li capacity and high cathode mass loading of 9.9 mg cm-2 can steadily cycle for 300 cycles with a capacity retention of 86.6%. The LiBO2 @Li/NCM811 full batteries and LiBO2 @Li/LiBO2 @Li symmetric batteries also present excellent cycling performance at both -20 and 60 °C. This work develops a strategy to achieve outstanding performance of LMBs at wide working temperature-range.

3.
Adv Mater ; 34(13): e2108252, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34890090

RESUMO

The 3D nanocomposite structure of plated lithium (LiMetal ) and solid electrolyte interphases (SEI), including a polymer-rich surficial passivation layer (SEI exoskeleton) and inorganic SEI "fossils" buried inside amorphous Li matrix, is resolved using cryogenic transmission electron microscopy. With ether-based DOLDME-LiTFSI electrolyte, LiF and Li2 O nanocrystals are formed and embedded in a thin but tough amorphous polymer in the SEI exoskeleton. The fast Li-stripping directions are along [ 1 ¯ 10 ] or [ 12 1 ¯ ] , which produces eight exposed {111} planes at halfway charging. Full Li stripping produces completely sagging, empty SEI husks that can sustain large bending and buckling, with the smallest bending radius of curvature observed approaching tens of nanometers without apparent damage. In the 2nd round of Li plating, a thin LiBCC sheet first nucleates at the current collector, extends to the top end of the deflated SEI husk, and then expands its thickness. The apparent zero wetting angle between LiBCC and the SEI interior means that the heterogeneous nucleation energy barrier is zero. Due to its complete-wetting property and chemo-mechanical stability, the SEI largely prevents further reactions between the Li metal and the electrolyte, which explains the superior performance of Li-metal batteries with ether-based electrolytes. However, uneven refilling of the SEI husks results in dendrite protrusions and some new SEI formation during the 2nd plating. A strategy to form bigger SEI capsules during the initial cycle with higher energy density than the following cycles enables further enhanced Coulombic efficiency to above 99%.

4.
ACS Appl Mater Interfaces ; 13(47): 56164-56170, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784190

RESUMO

Nano approaches are practical strategies to boost the thermoelectric figure of merit due to the strong phonon scattering from the grain boundaries and nanoinclusions. Here, we have reported a strong phonon scattering at the heterogeneous interfaces of Mg2Sn/Mg3Sb2 high-content nanocomposites (HCnCs). As a result, a significantly reduced lattice thermal conductivity of 1.09 W m-1 K-1 was observed in the equimolar Mg2Sn/Mg3Sb2 HCnC, 80% lower than pure Mg2Sn and 25% lower than pure Mg3Sb2. As a result, a high ZT ∼ 1.13 at 773 K was achieved in the Mg2Sn/Mg3Sb2 HCnC. Furthermore, various defects, including solid solutions, nanoinclusions, and misfit dislocations, were observed in both the Mg3Sb2 phase and the Mg2Sn phase through the microstructure characterization.

6.
ACS Appl Mater Interfaces ; 13(25): 29676-29690, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138532

RESUMO

Electrolyte additives have been extensively used as an economical approach to improve Li-ion battery (LIB) performances; however, their selection has been conducted on an Edisonian trial-and-error basis, with little knowledge about the relationship between their molecular structure and reactivity as well as the electrochemical performance. In this work, a series of phosphate additives with systematic structural variation were introduced with the purpose of revealing the significance of additive structure in building a robust interphase and electrochemical property in LIBs. By comparing the interphases formed by tripropyl phosphate (TPPC1), triallyl phosphate (TPPC2), and tripropargyl phosphate (TPPC3) containing alkane, alkene, and alkyne functionalities, respectively, theoretical calculations and comprehensive characterizations reveal that TPPC3 and TPPC2 exhibit more reactivity than TPPC1, and both can preferentially decompose both reductively and oxidatively, forming dense and protective interphases on both the cathode and anode, but they lead to different long-term cycling behaviors at 55 °C. We herein correlate the electrochemical performance of the high energy Li-ion cells to the molecular structure of these additives, and it is found that the effectiveness of TPPC1, TPPC2, and TPPC3 in preventing gas generation, suppressing interfacial resistance growth, and improving cycling stability can be described as TPPC3 > TPPC2 > TPPC1, i.e., the most unsaturated additive TPPC3 is the most effective additive among them. The established correlation between structure-reactivity and interphase-performance will doubtlessly construct the principle foundation for the rational design of new electrolyte components for future battery chemistry.

7.
Nat Commun ; 12(1): 3066, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031418

RESUMO

Cryogenic transmission electron microscopy (cryo-TEM) is a valuable tool recently proposed to investigate battery electrodes. Despite being employed for Li-based battery materials, cryo-TEM measurements for Na-based electrochemical energy storage systems are not commonly reported. In particular, elucidating the chemical and morphological behavior of the Na-metal electrode in contact with a non-aqueous liquid electrolyte solution could provide useful insights that may lead to a better understanding of metal cells during operation. Here, using cryo-TEM, we investigate the effect of fluoroethylene carbonate (FEC) additive on the solid electrolyte interphase (SEI) structure of a Na-metal electrode. Without FEC, the NaPF6-containing carbonate-based electrolyte reacts with the metal electrode to produce an unstable SEI, rich in Na2CO3 and Na3PO4, which constantly consumes the sodium reservoir of the cell during cycling. When FEC is used, the Na-metal electrode forms a multilayer SEI structure comprising an outer NaF-rich amorphous phase and an inner Na3PO4 phase. This layered structure stabilizes the SEI and prevents further reactions between the electrolyte and the Na metal.

8.
ACS Appl Mater Interfaces ; 13(18): 21467-21473, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938748

RESUMO

As a promising high energy density electrode material for rechargeable batteries, lithium (Li) metal is still suffering from air/water instability due to its highly reactive nature. In addition, the Li dendrite issue in Li metal batteries needs to be resolved to ensure the safety of batteries and for wide applications. Herein, we demonstrate that a simple compact GaOx layer formed using liquid metal (LM) can act as an artificial solid electrolyte interphase to block moisture and oxygen in the air from corroding the lithium metal. Interestingly, GaOx that covered the electrode effectively inhibits Li dendrite growth in electrochemistry cycling, ensuring the safety of Li metal batteries. The exposed composite Li metal anode (exposed under ambient air with relative humidity (RA) ≈ 75% for 5 h) not only shows a superior stability (symmetrical cell) but also delivers an elevated cycling stability (>500 cycles at 0.5 and 1 C) with a sulfur@C cathode in the full-cell configuration. Our work provides a new pathway for the large-scale applications of the air/water-tolerant Li metal anode in rechargeable batteries.

9.
Adv Mater ; 33(22): e2100404, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33899278

RESUMO

The solid electrolyte interphase (SEI) dictates the cycling stability of lithium-metal batteries. Here, direct atomic imaging of the SEI's phase components and their spatial arrangement is achieved, using ultralow-dosage cryogenic transmission electron microscopy. The results show that, surprisingly, a lot of the deposited Li metal has amorphous atomic structure, likely due to carbon and oxygen impurities, and that crystalline lithium carbonate is not stable and readily decomposes when contacting the lithium metal. Lithium carbonate distributed in the outer SEI also continuously reacts with the electrolyte to produce gas, resulting in a dynamically evolving and porous SEI. Sulfur-containing additives cause the SEI to preferentially generate Li2 SO4 and overlithiated lithium sulfate and lithium oxide, which encapsulate lithium carbonate in the middle, limiting SEI thickening and enhancing battery life by a factor of ten. The spatial mapping of the SEI gradient amorphous (polymeric → inorganic → metallic) and crystalline phase components provides guidance for designing electrolyte additives.

10.
Adv Mater ; 32(42): e2004793, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32930460

RESUMO

Lithium (Li) metal offers the highest projected energy density as a battery anode, however its extremely high reactivity induces dendrite growth and dead Li formation during repeated charge/discharge processes, resulting in both poor reversibility and catastrophic failure. Approaches reported to date often seek to suppress dendrites formation at the expense of energy density. Here, a strategy that resolves the above conflict and achieves a dendrite-free and long-term reversible Li metal anode is reported. A self-organized core-shell composite anode, comprising an outer sheath of lithiated liquid metal (Lix LMy ) and an inner layer of Li metal, is developed, which posesses high electrical and ionic conductivity, and physically separates Li from the electrolyte. The introduction of Lix LMy not only prevents dendrite formation, but also eliminates the use of copper as an inert substrate. Full cells made of such composite anodes and commercially available LiNi0.6 Co0.2 Mn0.2 O2 (NCM622 ) cathodes deliver ultrahigh energy density of 1500 Wh L-1 and 483 Wh kg-1 . The high capacity can be maintained for more than 500 cycles, with fading rate of less than 0.05% per cycle. Pairing with LiNi0.8 Co0.1 Mn0.1 O2 (NCM811 ) further raises the energy density to 1732 Wh L-1 and 514 Wh kg-1 .

11.
J BUON ; 25(3): 1534-1540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32862601

RESUMO

PURPOSE: To explore the efficacy of metformin in the treatment of estrogen-dependent endometrial carcinoma (EC) complicated with type 2 diabetes mellitus (T2DM), and the influencing factors for the prognosis of such patients. METHODS: The clinical data of 68 patients histopathologically diagnosed with estrogen-dependent EC complicated with T2DM in our hospital from April 2013 to March 2016, and 132 estrogen-dependent EC patients with normal blood glucose during the same period were retrospectively analyzed. The clinical and pathological features were compared between diabetic patients and non-diabetic patients. The diabetic patients were divided into the metformin group and the non-metformin group according to whether metformin was taken. The survival curves were plotted and analyzed using the Kaplan-Meier method, and the overall survival (OS) and progression-free survival (PFS) were compared among the three groups. Moreover, the multivariate analysis was performed using the COX regression model, so as to analyze the influencing factors for the prognosis of patients with estrogen-dependent EC complicated with T2DM. RESULTS: Compared with non-diabetic patients, diabetic patients had higher age of onset, a higher BMI, higher proneness to hypertension, more advanced tumor stage, a higher histological grade, deeper myometrial invasion and a higher risk of lymph node metastasis. Both OS and PFS of T2DM patients who took metformin were significantly prolonged compared with those of T2DM patients who did not take metformin (p=0.021, p=0.011). There were no statistically significant differences in the PFS and OS between diabetic patients who took metformin and non-diabetic patients (p>0.05). According to the results of Cox multivariate analysis, OS was obviously shortened in case of high age of onset, complicated T2DM, late pathological stage of tumor advanced tumor stage, high histological grade, deep myometrial invasion and positive lymph node metastasis, while PFS could was obviously shortened in case of complicated T2DM, late pathological stage of tumor advanced tumor stage, high histological grade, deep myometrial invasion and positive lymph node metastasis. Metformin evidently improved OS and PFS. CONCLUSION: Complicated T2DM, high age of onset, advanced tumor stage, high histological grade, deep myometrial invasion and positive lymph node metastasis are factors for the poor prognosis of patients with estrogen-dependent EC, and metformin can significantly ameliorate both OS and PFS in these patients, thereby improving their prognosis.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Neoplasias do Endométrio/patologia , Estrogênios/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Humanos , Metástase Linfática/patologia , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
12.
ACS Appl Mater Interfaces ; 12(26): 29316-29323, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510193

RESUMO

High-mass-loading electrodes with long-term stability have long been a great challenge for lithium-sulfur batteries (LSBs), since the conventional binders are unable to cope with the shuttling of lithium polysulfides and the structural damage in an electrode. Here, a novel water-based polymer, polyphosphate acid cross-linked chitosan ethylamide carbamide (PACEC), is developed as a binder to construct high-energy-density sulfur cathode and flexible LSBs. With a dual-cross-linked network, the PACEC shows excellent affinity with lithium polysulfides to relieve the shuttle effect and robust mechanical properties to stabilize the electrode. The sulfur cathode based on PACEC demonstrates a high sulfur loading of 14.8 mg cm-2, the areal initial capacity of 17.5 mAh cm-2, and Coulombic efficiency of 99.3%, while the amount of electrolyte is strictly limited to 6 µL mg-1. More importantly, a robust pouch cell with an area of 6 cm2 and only 177% oversized lithium can successfully integrate the energy density of 6.5 mAh cm-2 with the cycling retention per cycle of 99.74% during 270 cycles and flexibility at a curvature of 3 mm. This study provides inspirations for the design of eco-friendly polymer binders and paving new ways for the development of LSBs.

13.
Nano Lett ; 20(5): 4029-4037, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32343592

RESUMO

Solid electrolyte interphase (SEI) is crucial for suppressing Li dendrite growth in high-energy lithium metal (LiM) batteries. Unfortunately, the naturally formed SEI on the LiM anode surface in carbonate electrolytes cannot suppress Li dendrites, resulting in a continuous consumption of electrolytes and LiM during cycling. Artificial SEI normally lacks self-healing and self-regulating capability, gradually losing the effectiveness during cycling. In this work, we report the self-regulating phenomenon of LiRAP-ASEI that can effectively suppress Li dendrites and is investigated using in situ optical microscopy and COMSOL multiphysics simulation. The effectiveness of self-regulated LiRAP-ASEI is further evaluated in the most aggressive Li/sulfur cells with a lean electrolyte (10 µL mAh-1) and LiRAP-ASEI/LiM (2.5-fold excess of LiM). The LiRAP@Cu∥sulfur@C cells show a stable 3000 cycle life at a current density of 11.5 mA cm-2. The self-regulated phenomenon holds great promise for the development of high-energy-density LMBs.

14.
Nano Lett ; 20(4): 2724-2732, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32149520

RESUMO

Three-dimensional (3D) lithiophilic host is one of the most effective ways to regulate the Li dendrites and volume change in working Li metal anode. The state-of-the-art 3D lithiophilic hosts are facing one main challenge in that the lithiophilic layer would melt or fall off in high-temperature environment when using the thermal infusion method. Herein, a 3D porous CuZn alloy host containing anchored lithiophilic Zn sites is employed to prestore Li using the thermal infusion strategy, and a 3D composite Li is thus fabricated. Benefiting from the lithiophilic Zn sites with a strong adsorption capacity with Li, which is based on the analyses of the nucleation overpotential, binding energy calculation, and the operando optical observation of Li plating/stripping behaviors, facile uniform Li nucleation and dendrite-free Li deposition could be achieved in the interior of the 3D porous CuZn alloy host and the 3D composite Li shows remarkable enhancement in electrochemical performance.

15.
ACS Appl Mater Interfaces ; 12(9): 10443-10451, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32040291

RESUMO

Electrolytes in modern Li ion batteries (LIBs) rely on additives of various structures to generate key interphasial chemistries needed for desired performances, although how these additives operate in battery environments remains little understood. Meanwhile, these traditional additives face increasing challenges from emerging battery chemistries, especially those based on the nickel cathode (Ni ≥ 50%) or the metallic lithium anode. In this work, we report a new additive structure with the highest unsaturation degree known so far along with the in-depth understanding of its breakdown mechanism on those aggressive electrode surfaces. Tripropargyl phosphate (TPP) containing three carbon-carbon triple bonds was found to form dense and protective interphases on both NMC532 cathode as well as graphitic and metallic lithium anodes, leading to significant improvements in performances of both LIBs and lithium metal batteries (LMBs). Comprehensive characterizations together with calculations reveal how the unsaturation functionalities of TPP interact with these electrode chemistries and establish interphases that inhibit gas generation, suppress lithium dendrite growth, and prevent transition metal ion dissolution and deposition on the anode surface. The correlation established among the additive structure, interphasial chemistries, and cell performance will doubtlessly guide us in designing the electrolytes with atomistic precision for future battery chemistries.

16.
Materials (Basel) ; 12(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366052

RESUMO

The trap-assisted charge injection in polyfluorene-poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) model systems with an Al or Al/LiF cathode is investigated. We find that inserting 1.3 nm LiF increases electron and hole injections simultaneously and the increase of holes is greater than electrons. The evolution of internal interfaces within polymer light-emitting diodes is observed by transmission electron microscopy, which reveals that the introduction of LiF improves the interface stability at both the cathode (cathode/polymer) and the anode (indium tin oxide (ITO)/PEDOT:PSS). Above-mentioned experimental results have been compared to the numerical simulations with a revised Davids model and potential physical mechanisms for the trap-assisted charge injection are discussed.

17.
Small ; 15(48): e1902071, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31293097

RESUMO

High-performance supercapacitors (SCs) are important energy storage components for emerging wearable electronics. Rendering low-temperature foldability to SCs is critically important when wearable devices are used in a cold environment. However, currently reported foldable SCs do not have a stable electrochemical performance at subzero temperatures, while those that are performing are not foldable. Herein, a freestanding pure-carbon-based porous electrode, namely, lamellar porous carbon stack (LPCS), is reported, which enables stable low-temperature-foldable SCs. The LPCS, which is fabricated with a simple vacuum filtration of a mixture of carbon fibers (CFs), holey reduced graphene oxides (HRGOs), and carbon nanotubes (CNTs), possesses a lamellar stacking of porous carbon thin sheets, in which the CFs act as the skeleton and the HRGOs and CNTs act as binders. The unique structure leads to excellent compression resilience, high foldability, and high electronic and ionic conductivity. SCs made with the LPCS electrodes and ionic liquid electrolyte show a high energy density (2.1 mWh cm-2 at 2 mA cm-2 ), low-temperature long lifetime (95% capacity after 10 000 cycles at -30 °C), and excellent low-temperature foldability (86% capacity after 1000 folding cycles at -30 °C).

18.
Small ; : e1801189, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29931735

RESUMO

With extremely high specific capacity, silicon has attracted enormous interest as a promising anode material for next-generation lithium-ion batteries. However, silicon suffers from a large volume variation during charge/discharge cycles, which leads to the pulverization of the silicon and subsequent separation from the conductive additives, eventually resulting in rapid capacity fading and poor cycle life. Here, it is shown that the utilization of a self-healable supramolecular polymer, which is facilely synthesized by copolymerization of tert-butyl acrylate and an ureido-pyrimidinone monomer followed by hydrolysis, can greatly reduce the side effects caused by the volume variation of silicon particles. The obtained polymer is demonstrated to have an excellent self-healing ability due to its quadruple-hydrogen-bonding dynamic interaction. An electrode using this self-healing supramolecular polymer as binder exhibits an initial discharge capacity as high as 4194 mAh g-1 and a Coulombic efficiency of 86.4%, and maintains a high capacity of 2638 mAh g-1 after 110 cycles, revealing significant improvement of the electrochemical performance in comparison with that of Si anodes using conventional binders. The supramolecular binder can be further applicable for silicon/carbon anodes and therefore this supramolecular strategy may increase the choice of amendable binders to improve the cycle life and energy density of high-capacity Li-ion batteries.

19.
J Mater Chem B ; 6(22): 3742-3750, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254836

RESUMO

This work reports novel, robust, multifunctional covalent-bonded polymer nanofilms based on highly efficient spin-assisted layer-by-layer (LbL) assembly, with a wide range of engineering and bioengineering applications. An active-ester block copolymer, polypentafluorophenylacrylate-block-polystyrene (PPFPA-b-PS), and an amine-rich polymer, branched polyethyleneimine (PEI), were chosen as model polymers. The as-prepared nanofilms show switchable hydrophobicity with controllable thickness. Nanomechanical tests demonstrate that the surface adhesion between the PPFPA-b-PS and PEI layers facilitates excellent film stability under different solvent conditions. Robust and centimeter-scale freestanding nanofilms with good transparency and excellent flexibility could be readily obtained by peeling the films from their silicon substrates without using a sacrifice layer. More importantly, the multi-layer nanofilms containing free pentafluorophenol groups or amine groups can be readily functionalized further to tailor the properties of the films for various applications. As a proof of concept, a multi-layer nanofilm with free ester groups was modified with rhodamine-6G hydrazone and tested as a H+ sensor. The free amine groups in the polymer nanofilms show strong interactions with perfluorooctanoic acid for achieving high surface hydrophobicity. The polymer nanofilms also show exceptional tunable cell-attachment behavior by switching the outmost layer between PPFPA-b-PS and PEI, demonstrating great potential for biomedical applications.

20.
J Antibiot (Tokyo) ; 71(2): 287-297, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28743974

RESUMO

A convergent total synthesis platform led to the discovery of TP-2758 from a series of novel 7-methoxy-8-heterocyclyl tetracycline analogs. TP-2758 demonstrated high in vitro potency against key Gram-negative pathogens including extended spectrum ß-lactamases- and carbapenemase-producing Enterobacteriaceae and Acinetobacter spp. strains. This compound was efficacious when administered either intravenously or orally in multiple murine infection models and displayed a favorable preclinical pharmacological profile supporting its advancement into clinical development.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Tetraciclinas/síntese química , Tetraciclinas/farmacologia , Acinetobacter/efeitos dos fármacos , Administração Intravenosa , Administração Oral , Animais , Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Descoberta de Drogas , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Macaca fascicularis , Testes de Sensibilidade Microbiana , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tetraciclinas/farmacocinética , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...