Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31676476

RESUMO

Formycin A (FOR-A) and pyrazofurin A (PRF-A) are purine-related C-nucleoside antibiotics, in which ribose and a pyrazole-derived base are linked by a C-glycosidic bond. However, the logic underlying the biosynthesis of these molecules has remained largely unexplored. Here, we report the discovery of the pathways for FOR-A and PRF-A biosynthesis from diverse actinobacteria, and propose that their biosynthesis is likely initiated by a lysine N6 -monooxygenase. Moreover, we show that the forT and prfT (involved in FOR-A and PRF-A biosynthesis, respectively) mutants are correspondingly capable of accumulating the unexpected pyrazole-related intermediates, 4-amino-3,5-dicarboxypyrazole and 3,5-dicarboxy-4-oxo-4,5-dihydropyrazole. We also decipher the enzymatic mechanism of ForT/PrfT for the C-glycosidic bond formation in FOR-A/PRF-A biosynthesis. To our knowledge, ForT/PrfT represents an example of ß-RFA-P (ß-ribofuranosyl-aminobenzene 5'-phosphate) synthase-like enzymes governing C-nucleoside scaffold construction in natural product biosynthesis. These data establish a foundation for combinatorial biosynthesis of related purine nucleoside antibiotics, and also open the way for target-directed genome mining of PRF-A/FOR-A related antibiotics.IMPORTANCE FOR-A and PRF-A are C-nucleoside antibiotics known for their unusual chemical structures and remarkable biological activities. Deciphering the enzymatic mechanism for the construction of C-nucleoside scaffold during FOR-A/PRF-A biosynthesis will not only expand biochemical repertoire for novel enzymatic reactions, but also permit the target-oriented genome mining of FOR-A/PRF-A related C-nucleoside antibiotics. Moreover, the availability of the FOR-A/PRF-A biosynthetic gene clusters will pave the way for the rational generation of designer FOR-A/PRF-A derivatives with enhanced/selective bioactivity via synthetic biology strategies.

2.
J Org Chem ; 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729221

RESUMO

Tricyclic carbazole is an important scaffold in many naturally occurring metabolites, as well as valuable building blocks. Here we report reconstitution of the ring A formation of bacterial neocarazostatin A carbazole metabolite. We provide evidence of involvement of two unusual aromatic polyketide proteins. This finding suggests how new enzymatic activities can be recruited to specific pathways to expand biosynthetic capacities. Finally, we leveraged our bioinformatics survey to identify the untapped capacity of carbazole biosynthesis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31704680

RESUMO

Hybrubins are "unnatural" alkaloids with the same 4'-methoxy-2,2'-bipyrrole-5'-methine moiety found in prodiginines and a different ring derived from tetramic acids. Here, we demonstrated that RedH, a homologue of prodigiosin synthetase PigC, was responsible for the biosynthesis of hybrubins A and B in Streptomyces lividans In vitro reactions indicated that RedH and PigC catalyzed the intermolecular condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and (Z)-5-ethylidenetetramic acid (ETA) to produce hybrubin B. Moreover, we demonstrated that RedH and PigC activated MBC via phosphorylation of the aldehyde group to form an intermediate Pi-MBC and that the subsequent condensation between Pi-MBC and (Z)-5-ethylidenetetramic acid occurs in a non-enzymatic way.IMPORTANCE Hybrubins is an emerging class of prodiginines possessing a new C-ring derived from 5'-substituted tetramic acids and the methylene bridge connecting the C-ring at a different position. We have supposed that condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and 5-ethylidenetetramic acid (ETA) yields the hybrid natural products hybrubins, which was proposed to be catalysed by the undecylprodigiosin synthetase RedH. However, it is doubted whether the RedH is able to catalyse another type of condensation between MBC and tetramic acids. In this study, we have demonstrated that the MBC-ETA condensation proceeds through RedH/PigC-catalysed enzymatic activation of MBC via phosphorylation and a non-enzymatic condensation of Pi-MBC with ETA. Since MBC analogues have been showed to be accepted by PigC, more hybrubin analogues might be produced by using combinations of MBC analogues and other tetramic acids in future studies.

4.
Chem Commun (Camb) ; 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31712798

RESUMO

A novel bright near-infrared II (NIR-II, 1000-1700 nm) fluorescent probe with excellent water-solubility, superior photostability, and excellent in vitro and in vivo biocompatibility was facilely synthesized for in vivo biomedical imaging of xenograft breast tumor and chemically induced spontaneous breast carcinoma. To the best of our knowledge, it is the first time that the superior practical applications of this NIR-II probe in dimethylbenzanthracene (DMBA)-induced rat mammary carcinoma imaging and image-guided rat carcinoma surgery were demonstrated.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31565827

RESUMO

Sactionine-containing antibiotics (sactibiotics) are a growing class of peptide antibiotics belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. We report the characterization of thuricin Z, a novel sactibiotic from Bacillus thuringiensis. Unusually, the biosynthesis of thuricin Z involves two radical S-adenosylmethionine (SAM) enzymes, ThzC and ThzD. Although ThzC and ThzD are highly divergent from each other, these two enzymes produced the same sactionine ring in the precursor peptide ThzA in vitro. Thuricin Z exhibits narrow-spectrum antibacterial activity against Bacillus cereus. A series of analyses, including confocal laser scanning microscopy, ultrathin-sectioning transmission electron microscopy, scanning electron microscopy, and large-unilamellar-vesicle-based fluorescence analysis, suggested that thuricin Z binds to the bacterial cell membrane and leads to membrane permeabilization.

6.
Org Lett ; 21(18): 7592-7596, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31490082

RESUMO

Pentalenolactone is a microbial sesquiterpenoid with antibiotic activity. Its biosynthetic pathway was elucidated by a combination of genetic and biochemical characterizations of all genes involved. For the related neopentalenoketolactone biosynthetic gene cluster from Streptomyces avermitilis, an α-ketoglutarate-dependent mononuclear nonheme iron enzyme, PtlD, was proposed to catalyze both desaturation and olefin epoxidation reactions. Yet, these activities remained to be validated by in vitro biochemical evidence. In this report, we demonstrated that PtlD has multiple activities, including hydroxylation, desaturation, and epoxidation, and confirmed the presence of the elusive epoxide intermediate in a neopentalenoketolactone pathway.

7.
Nat Commun ; 10(1): 4248, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534134

RESUMO

Enzymatic reactions in living cells are highly dynamic but simultaneously tightly regulated. Enzyme engineers seek to construct multienzyme complexes to prevent intermediate diffusion, to improve product yield, and to control the flux of metabolites. Here we choose a pair of short peptide tags (RIAD and RIDD) to create scaffold-free enzyme assemblies to achieve these goals. In vitro, assembling enzymes in the menaquinone biosynthetic pathway through RIAD-RIDD interaction yields protein nanoparticles with varying stoichiometries, sizes, geometries, and catalytic efficiency. In Escherichia coli, assembling the last enzyme of the upstream mevalonate pathway with the first enzyme of the downstream carotenoid pathway leads to the formation of a pathway node, which increases carotenoid production by 5.7 folds. The same strategy results in a 58% increase in lycopene production in engineered Saccharomyces cerevisiae. This work presents a simple strategy to impose metabolic control in biosynthetic microbe factories.

8.
ACS Synth Biol ; 8(9): 1991-1997, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31487454

RESUMO

Direct cloning of natural product pathways for efficient refactoring and heterologous expression has become an important strategy for microbial natural product research and discovery, especially for those kept silent or poorly expressed in the original strains. Accordingly, the development of convenient and efficient cloning approaches is becoming increasingly necessary. Here we presented an in vitro packaging mediated cloning approach that combines CRISPR/Cas9 system with in vitro λ packaging system, for targeted cloning of natural product pathways. In such a scheme, pathways of Tü3010 (27.4 kb) and sisomicin (40.7 kb) were respectively cloned, and stuR was further depicted to positively regulate Tü3010 production. In vitro packaging mediated approach not only enables to activate cryptic pathways, but also facilitates refactoring or interrogating the pathways in conjunction with various gene editing systems. This approach features an expedited, convenient, and generic manner, and it is conceivable that it may be widely adopted for targeted cloning of the natural product pathways.

9.
Biotechnol J ; : e1900175, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520458

RESUMO

Lipopeptides are produced by nonribosomal peptide synthetases (NRPSs) and contain diverse fatty acyl moieties that are major determinants of antibiotic potency. The lipid chains are incorporated into peptidyl backbones via lipoinitiation, a process comprising free fatty acid activation and the subsequent starter condensation domain (C1)-catalyzed conjugation of fatty acyl moieties onto the aminoacyl substrates. Thus, a thorough understanding of lipoinitiation biocatalysts would significantly expand their potential to produce novel antibiotics. Here, biochemical assays, in silico analysis, and mutagenesis studies are used to ultimately identify the specific amino acid residues that control the fatty acyl substrate selectivity of C1 in lipopeptide A54145. In silico docking study has identified four candidate amino acids, and subsequent in vitro assays confirmed their functional contribution to the channel that controls substrate selectivity. Two engineered variants with single point mutations in C1 are found to alter the substrate selectivity toward nonnatural fatty acyl substrates. The detailed mechanistic insights into the catalytic contribution of C1 obtained from the present study will facilitate future NPRS biocatalyst efforts.

10.
J Agric Food Chem ; 67(40): 11148-11157, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532654

RESUMO

Lycopene is widely used in foods, cosmetics, nutritional supplements, and pharmaceuticals. Microbial production of lycopene has been intensively studied. However, there are few systematic engineering studies on Saccharomyces cerevisiae aimed at achieving high-yield lycopene production. In the current study, by employing a systematic optimization strategy, we screened the key lycopene biosynthetic genes, crtE, crtB, and crtI, from diverse organisms. By adjusting the copy number of these three key genes, knocking out endogenous bypass genes, increasing the supply of the precursor acetyl-CoA, balancing NADPH utilization, and regulating the GAL-inducible system, we constructed a high-yield lycopene-producing strain BS106, which can produce 310 mg/L lycopene in shake-flask fermentation, with gene expression controlled by glucose. In optimized two-stage fed-batch fermentation, BS106 produced 3.28 g/L lycopene in a 7 L fermenter, which is the highest concentration achieved in S. cerevisiae to date. It will decrease the consumption of tomatoes for lycopene extraction and increase the market supply of lycopene.


Assuntos
Licopeno/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Appl Microbiol Biotechnol ; 103(21-22): 8785-8797, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31515597

RESUMO

Ophiobolins (ophs) are characteristic 5-8-5 tricyclic sesterterpenes with potential pharmaceutical activities. Ophiobolin synthase is a bifunctional terpene synthase (BTS) that catalyzes both chain elongation and cyclization. In Aspergillus ustus 094102, ophiobolin accumulation was involved with not only ophiobolin synthase C25 (Au8003) but also other four gene clusters containing C15 (Au6298), C20 (Au13192 and Au11565), and C30 (Au3446) terpene synthases. In this report, overexpression of codon-optimized gene Au8003 resulted in a detectable production of oph F in E. coli. In subsequent modulation of culture conditions, pentose arabinose allowed a more than 10-fold improvement of production than that of glycerol. To achieve a higher titer, the whole mevalonate pathway and an additional copy of isopentenyl diphosphate isomerase gene were assembled, leading to approximately 24-fold and 60-fold yield increases, respectively. The above four terpene synthase genes related to ophiobolin production in strain 094102 were individually or combinatorially overexpressed with Au8003 to mimic the original fungal biosynthesis. The biosynthesis of oph scaffold was increased by short-chain terpene synthases (C15 and C20), among which the C15 synthase gene contributed the highest yield of 82.76 mg/L at 96 h; the multi-gene combinatorial results suggested that cyclization might be a rate-limiting step. Further protein engineering including fusion tags and phylogenetically based mutations on the rate-limiting cyclization part of Au8003 enabled a further yield improvement (> 150 mg/L at 96 h) in shake flasks. These multiple approaches for sesterterpene skeleton production using engineered E. coli may be applicable for cost-effective, high-yield productions of ophiobolins and other compounds synthesized by BTSs.

12.
Biotechnol J ; : e1900212, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31469239

RESUMO

Fluorescence imaging, as a commonly used scientific tool, is widely applied in various biomedical and material structures through visualization technology. Highly selective and sensitive luminescent biological probes, as well as those with good water solubility, are urgently needed for biomedical research. In contrast to the traditional aggregation-caused quenching of fluorescence, in the unique phenomenon of aggregation-induced emission (AIE), the individual luminogens have extremely weak or no emissivity because they each have free intramolecular motion; however, when they form aggregates, these components immediately "light up". Since the discovery of "turn-on" mechanism, researchers have been studying and applying AIE in a variety of fields to develop more sensitive, selective, and efficient strategies for the AIE dyes. There are numerous advantages to the use of AIE-based methods, including low background interference, strong contrast, high performance in intracellular imaging, and the ability for long-term monitoring in vivo. In this review, two typical examples of AIEgens, TPE-Cy and TPE-Ph-In, are described, including their structure properties and applications. Recent progress in the biological applications is mainly focused on. Undoubtedly, in the near future, an increasing number of encouraging and practical ideas will promote the development of more AIEgens for broad use in biomedical applications.

13.
Mol Cell ; 76(1): 126-137.e7, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31444107

RESUMO

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains. The entire Met4 pathway, which links cell proliferation with sulfur amino acid metabolism, was significantly affected by K11 chains and selected for mechanistic studies. Previously, we demonstrated that a K48-linked ubiquitin chain represses the transcription factor Met4. Here, we show that efficient Met4 activation requires a K11-linked topology. Mechanistically, our results propose that the K48 chain binds to a topology-selective tandem ubiquitin binding region in Met4 and competes with binding of the basal transcription machinery to the same region. The change to K11-enriched chain architecture releases this competition and permits binding of the basal transcription complex to activate transcription.

14.
Nat Commun ; 10(1): 3378, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358750

RESUMO

Steroidal C19-hydroxylation is pivotal to the synthesis of naturally occurring bioactive C19-OH steroids and 19-norsteroidal pharmaceuticals. However, realizing this transformation is proved to be challenging through either chemical or biological synthesis. Herein, we report a highly efficient method to synthesize 19-OH-cortexolone in 80% efficiency at the multi-gram scale. The obtained C19-OH-cortexolone can be readily transformed to various synthetically useful intermediates including the industrially valuable 19-OH-androstenedione, which can serve as a basis for synthesis of C19-functionalized steroids as well as 19-nor steroidal drugs. Using this biocatalytic C19-hydroxylation method, the unified synthesis of six C19-hydroxylated pregnanes is achieved in just 4 to 9 steps. In addition, the structure of sclerosteroid B is revised on the basis of our synthesis.

15.
Nucleic Acids Res ; 47(14): 7690-7702, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31260525

RESUMO

Bacterial toxin-antitoxin pairs play important roles in bacterial multidrug tolerance. Gcn5-related N-acetyltransferase (GNAT) toxins inhibit translation by acetylation of aminoacyl-tRNAs and are counteracted by direct contacts with cognate ribbon-helix-helix (RHH) antitoxins. Our previous analysis showed that the GNAT toxin KacT and RHH antitoxin KacA of Klebsiella pneumoniae form a heterohexamer in solution and that the complex interacts with the cognate promoter DNA, resulting in negative autoregulation of kacAT transcription. Here, we present the crystal structure of DNA-bound KacAT complex at 2.2 Å resolution. The crystal structure revealed the formation of a unique heterohexamer, KacT-KacA2-KacA2-KacT. The direct interaction of KacA and KacT involves a unique W-shaped structure with the two KacT molecules at opposite ends. Inhibition of KacT is achieved by the binding of four KacA proteins that preclude the formation of an active KacT dimer. The kacAT operon is auto-regulated and we present an experimentally supported molecular model proposing that the KacT:KacA ratio controls kacAT transcription by conditional cooperativity. These results yield a profound understanding of how transcription GNAT-RHH pairs are regulated.

16.
Biotechnol J ; 14(11): e1900114, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31294913

RESUMO

Xylose/glucose isomerases are important industrial enzymes that are most widely used in food industries; however, their previously reported expression levels do not meet the requirements for industrial application. Here, an antibiotic resistance marker (ARM)-free system driven by ribosomal RNA (rRNA) promoters is developed to obtain high-level xylose/glucose isomerase (XI/GI) expression in Streptomyces rubiginosus (S. rubiginosus). The rRNA promoter rrnD yields the highest glucose isomerase production titer of XIs/GIs, which is eight times higher than that of ermEp* and 2.6 times higher than that of kasOp*. The integrated ARM gene is removed by further introduction of the Cre plasmid with a temperature-sensitive replicon. The production titer of XIs/GIs is further improved by replacing the xylR gene with an additional expression glucose isomerase cassette at the xylR locus. Ultimately, the glucose isomerase activity reaches up to 79.7 ± 7.5 U mL-1 at 96 h. The results support the robustness and stability of XI/GI production with this ARM-free system using optimal ribosomal promoters in S. rubiginosus, demonstrating strong potential in large-scale industrial applications. Besides, the results imply that rRNA promoters are strong promoters that can be used for protein engineering or metabolic engineering.

17.
Pharmacol Res ; 146: 104294, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175940

RESUMO

Breast cancer, the most prevalent cancer in women, remains the second in the list of cancer mortality, the majority of these fatalities resulted from estrogen receptor alpha (ERα) positive disease. ERα is well known for its function on breast cancer initiation and development and has become the most successful biomarker in breast cancers. Ophiobolins are sesterterpene compounds with a distinct tricyclic 5-8-5 ring and have presented anti-cancer activities. MHO7(6-epi-ophiobolin G)was isolated from products of a mangrove fungus in our previous research and demonstrated robust activity against breast cancer cells (BCCs). The investigation on the precise mechanism of MHO7 shows that MHO7 acts as a novel ERα down regulator different from the known molecules in ER + breast cancer cells. A whole-genome transcriptomic analysis on MCF-7 cells treated with MHO7 revealed the estrogen signaling pathway was the most affected pathway, and further evidence showed the de novo synthesis of ESR1 mRNA was inhibited. In addition, MHO7 down-regulated ERα at the protein level through multiple approaches. It not only bound to ERα, pushing helix 11 away in the agonist conformation but also increased the ERα degradation through the ubiquitin-proteasome system. These effects consequently caused decreasing of the transcriptional activity of ER modulation which was confirmed by the decreasing of estrogen receptor element (ERE) activity as well as downstream genes expressions like GREB1, BRCA1, MUC1 and CCND1. Combination of tamoxifen and MHO7 yield a synergistic effect on the inhibition of MCF-7 cells when treated around the IC50 values. Our results suggest that MHO7 is a very promising drug candidate and provides a novel drug version on ERα down-regulation to fighting with breast cancer.

18.
MBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164460

RESUMO

Nicotine, a toxic and addictive alkaloid from tobacco, is an environmental pollutant in areas near cigarette production facilities. Over the last decade, our group has studied, in depth, the pyrrolidine pathway of nicotine degradation in Pseudomonas putida S16. However, little is known regarding whole mechanism(s) regulating transcription of the nicotine degradation pathway gene cluster. In the present study, we comprehensively elucidate an overall view of the NicR2-mediated two-step mechanism regulating 3-succinoyl-pyridine (SP) biotransformation, which involves the association of free NicR2 with two promoters and the dissociation of NicR2 from the NicR2-promoter complex. NicR2 can bind to another promoter, Pspm, and regulate expression of the nicotine-degrading genes in the middle of nic2 gene cluster, which are not controlled by the previously reported Phsp promoter. We identified the function of the inverted repeat bases on the two promoters responsible for NicR2 binding and found out that the -35/-10 motif for RNA polymerase is overlapped by the NicR2 binding site. We clarify the exact role of 6-hydroxy-3-succinoyl-pyridine (HSP), which acts as an antagonist and may prevent binding of free NicR2 to the promoters but cannot release NicR2 from the promoters. Finally, a regulatory model is proposed, which consists of three parts: the interaction between NicR2 and two promoters (Pspm and Phsp), the interaction between NicR2 and two effectors (HSP and SP), and the interaction between NicR2 and RNA polymerase.IMPORTANCE We report the entire process underlying the NicR2 regulatory mechanism from association between free NicR2 and two promoters to dissociation of the NicR2-promoter complex. NicR2 can bind to another promoter, Pspm, which controls expression of nicotine-degrading genes that are not controlled by the Phsp promoter. We identified specific nucleotides of the Pspm promoter responsible for NicR2 binding. HSP was further demonstrated as an antagonist, which prevents the binding of NicR2 to the Pspm and Phsp promoters, by locking NicR2 in the derepression conformation. The competition between NicR2 and RNA polymerase is essential to initiate transcription of nicotine-degrading genes. This study extends our understanding of molecular mechanisms in biodegradation of environmental pollutants and toxicants.

19.
Methods Enzymol ; 622: 271-292, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155056

RESUMO

Polyketides have valuable pharmaceutical properties and exhibit a high degree of structural diversity. This diversity can trace back to the polyketide synthesis assembly line, in which the gatekeeper domain ATs strictly control the selection and incorporation of the simple extender units. And thus engineering attempts targeted on ATs have been made to obtain novel polyketide skeletons, which are useful for pharmaceutical and cellular function studies. So far, method of combinatorial biosynthesis has become the most attractive and effective way, particularly through alteration of the acyltransferase (AT) specificity. Herein, upon the complex structures of a broadly selective SpnD-AT, we introduce a structure-directed protocol to manipulate the well-studied EryAT6 to broaden its substrate scope. This protocol can also be generalized to canonical AT domains engineering in the generation of novel and useful chemical probes for dissecting cellular functions.

20.
Biochemistry ; 58(27): 2978-2986, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199122

RESUMO

Salinomycin with antibacterial and anticoccidial activities is a commercial polyether polyketide widely used in animal husbandry as a food additive. Malonyl-CoA (MCoA), methylmalonyl-CoA (MMCoA), and ethylmalonyl-CoA (EMCoA) are used as extension units in its biosynthesis. To understand how the salinomycin modular polyketide synthase (PKS) strictly discriminates among these extension units, the acyltransferase (AT) domains selecting MCoA, MMCoA, and EMCoA were structurally characterized. Molecular dynamics simulations of the AT structures helped to reveal the key interactions involved in enzyme-substrate recognitions, which enabled the engineering of AT mutants with switched specificity. The catalytic efficiencies ( kcat/ Km) of these AT mutants are comparable with those of the wild-type AT domains. These results set the stage for engineering the AT substrate specificity of modular PKSs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA