Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Microb Cell Fact ; 21(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983520

RESUMO

Epidemic diseases and antibiotic resistance are urgent threats to global health, and human is confronted with an unprecedented dilemma to conquer them by expediting development of new natural product related drugs. C-nucleoside antibiotics, a remarkable group of microbial natural products with diverse biological activities, feature a heterocycle base linked with a ribosyl moiety via an unusual C-glycosidic bond, and have played significant roles in healthcare and for plant protection. Elucidating how nature biosynthesizes such a group of antibiotics has provided the basis for engineered biosynthesis as well as targeted genome mining of more C-nucleoside antibiotics towards improved properties. In this review, we mainly summarize the recent advances on the biosynthesis of C-nucleoside antibiotics, and we also tentatively discuss the future developments on rationally accessing C-nucleoside diversities in a more efficient and economical way via synthetic biology strategies.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/biossíntese , Nucleosídeos/biossíntese , Biologia Sintética/métodos , Actinobacteria/genética , Produtos Biológicos/química , Streptomyces/genética , Streptomyces/metabolismo , Biologia Sintética/tendências
2.
Nat Prod Rep ; 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989738

RESUMO

Covering: up to 2021Self-resistance mechanisms adopted by natural product producers have long been recognized and studied as a standalone system separated from the assembly machinery. However, as more examples of self-resistance have been characterized in detail, it has been revealed that self-resistance could associate with the assembly machinery to fulfill the task of biosynthesis. This review summarizes different self-resistance mechanisms showing a common feature: intersection with natural product assembly. Furthermore, their possible evolutionary origin and synthetic biology applications are discussed.

3.
J Control Release ; 342: 157-169, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998914

RESUMO

Nanocarriers hold great promise for the controlled release of therapeutic payloads to target organs/tissues and extended duration of anticancer agents in the bloodstream. However, limited data on their in vivo pharmacokinetics and delivery process hamper clinical applications. Here we report a series of micellar nanocarriers self-assembled from new-generation thiophenthiadiazole (TTD)-based NIR-II fluorophores HLAnP (n = 1-4) for simultaneous bioimaging and drug delivery. The NIR-II HLA4P nanocarrier displays exceptional non-fouling performance, minimal immunogenicity, ultralong blood half-life, and high tumor accumulation even with different administration routes. When used as a drug carrier, HLA4P with encapsulated doxorubicin (DOX) realized accurate tumor targeting and continuous real-time in vivo NIR-II tracking of drug delivery and therapy, showing a sustained release rate, improved therapeutic effect, and diminished cardiotoxicity as compared to free DOX. This study provides a new perspective on the design of dual-functional NIR-II fluorophores for diagnostic and therapeutic applications.

4.
Microorganisms ; 10(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35056544

RESUMO

Tellurite is highly toxic to bacteria and commonly used in the clinical screening for pathogens; it is speculated that there is a potential relationship between tellurite resistance and bacterial pathogenicity. Until now, the core function genes of tellurite resistance and their characteristics are still obscure. Pseudomonas citronellolis SJTE-3 was found able to resist high concentrations of tellurite (250 µg/mL) and formed vacuole-like tellurium nanostructures. The terZABCDE gene cluster located in the large plasmid pRBL16 endowed strain SJTE-3 with the tellurite resistance of high levels. Although the terC and terD genes were identified as the core function genes for tellurite reduction and resistance, the inhibition of cell growth was observed when they were used solely. Interestingly, co-expression of the terA gene or terZ gene could relieve the burden caused by the expression of the terCD genes and recover normal cell growth. TerC and TerD proteins commonly shared the conserved sequences and are widely distributed in many pathogenic bacteria, highly associated with the pathogenicity factors.

5.
Sci Data ; 9(1): 11, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058462

RESUMO

Bacterial integrative and conjugative elements (ICEs) are highly modular mobile genetic elements critical to the horizontal transfer of antibiotic resistance and virulence factor genes. To better understand and analyze the ongoing increase of ICEs, we developed an Integrative and Conjugative Element Ontology (ICEO) to represent the gene components, functional modules, and other information of experimentally verified ICEs. ICEO is aligned with the upper-level Basic Formal Ontology and reuses existing reliable ontologies. There are 31,081 terms, including 26,814 classes from 14 ontologies and 4128 ICEO-specific classes, representing the information of 271 known experimentally verified ICEs from 235 bacterial strains in ICEO currently and 311 predicted ICEs of 272 completely sequenced Klebsiella pneumoniae strains. Three ICEO use cases were illustrated to investigate complex joins of ICEs and their harboring antibiotic resistance or virulence factor genes by using SPARQL or DL query. ICEO has been approved as an Open Biomedical Ontology library ontology. It may be dedicated to facilitating systematical ICE knowledge representation, integration, and computer-assisted queries.

6.
Protein Pept Lett ; 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35049426

RESUMO

BACKGROUND: Pseudomonas citronellolis SJTE-3 can efficiently degrade 17ß-estradiol (E2) and other estrogenic chemicals. However, the enzyme responsible for E2 metabolism within strain SJTE-3 has remained unidentified. OBJECTIVE: Here, a novel 3-oxoacyl-(acyl-carrier protein) (ACP) reductase, HSD-X1 (WP_009617962.1), was identified in SJTE-3 and its enzymatic characteristics for the transformation of E2 were investigated. METHODS: Multiple sequence alignment and homology modelling were used to predict the protein structure of HSD-X1. The concentrations of different steroids in the culture of recombinant strains expressing HSD-X1 were determined by high performance liquid chromatography. Additionally, the transcription of hsd-x1 gene was investigated using reverse transcription and quantitative PCR analysis. Heterologous expression and affinity purification were used to obtain recombinant HSD-X1. RESULTS: The transcription of hsd-x1 gene in P. citronellolis SJTE-3 was induced by E2. Multiple sequence alignment (MSA) indicated that HSD-X1 contained the two consensus regions and conserved residues of short-chain dehydrogenase/reductases (SDRs) and 17ß-hydroxysteroid dehydrogenases (17ß-HSDs). Over-expression of hsd-x1 gene allowed the recombinant strain to degrade E2. Recombinant HSD-X1 was purified with a yield of 22.15 mg/L and used NAD+ as its cofactor to catalyze the oxidization of E2 into estrone (E1), while exhibiting a Km value of 0.025 ± 0.044 mM and a Vmax value of 4.92 ± 0.31 mM/min/mg. HSD-X1 could tolerate a wide range of temperature and pH, while the presence of divalent ions exerted little influence on its activity. Further, the transformation efficiency of E2 into E1 was over 98.03% across 15 min. CONCLUSION: Protein HSD-X1 efficiently catalyzed the oxidization of E2 and participated in estrogen degradation by P. citronellolis SJTE-3.

7.
J Hazard Mater ; 423(Pt A): 127045, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488099

RESUMO

Synthetic estrogens are the most hazardous and persistent environmental estrogenic contaminants, with few reports on their biodegradation. Pseudomonas citronellolis SJTE-3 degraded natural steroids efficiently and metabolized 17α-ethynylestradiol (EE2) with the addition of different easily used energy sources (glucose, peptone, ethanol, yeast extract, fulvic acid and ammonia). Over 92% of EE2 (1 mg/L) and 55% of EE2 (10 mg/L) in culture were removed in seven days with the addition of 0.1% ethanol, and the EE2-biotransforming efficiency increased with the increasing ethanol concentrations. Two novel intermediate metabolites of EE2 (C22H22O and C18H34O2) were identified with high-performance liquid chromatography (HPLC) and GC-Orbitrap/MS. Comparative analysis and genome mining revealed strain SJTE-3 contained a unique genetic basis for EE2 metabolism, and the putative EE2-degrading genes exhibited dispersed distribution. The EE2 metabolism of strain SJTE-3 was inducible and the transcription of eight genes were significantly induced by EE2. Three genes (sdr3, yjcH and cyp2) encoding a short-chain dehydrogenase, a membrane transporter and a cytochrome P450 hydroxylase, respectively, were vital for EE2 metabolism in strain SJTE-3; their over-expression accelerated EE2 metabolic processes and advanced the generation of intermediate metabolites. This work could promote the study of bacterial EE2 metabolism mechanisms and facilitate efficient bioremediation for EE2 pollution.


Assuntos
Etinilestradiol , Pseudomonas , Biodegradação Ambiental , Estrogênios , Pseudomonas/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-34927786

RESUMO

We investigated the biosynthetic pathway of type II polyketide murayaquinone. The murayaquinone biosynthetic cluster contains genes for three putative short-chain dehydrogenase/reductase family enzymes including MrqF and MrqH with known functions and MrqM with unclear function. We report the functional characterization of MrqM for its role in murayaquinone biosynthesis. Our gene deletion experiment and structural elucidation of the accumulated intermediates revealed that MrqM is related with the second polyketide ring cyclization, because the inactivation of mrqM resulted in the accumulation of an off-pathway intermediate SEK43 and disrupted the second and third ring cyclization. Site-directed mutagenesis studies showed that two conserved residues in MrqM and homologous proteins Y151 and K155 are essential for its activity. The previously proposed second/third ring cyclase, MrqD, might instead play another important role in the chain releasing step of the murayaquinone biosynthesis.

11.
Nat Commun ; 12(1): 6382, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737280

RESUMO

Phosphorothioate (PT) modification by the dnd gene cluster is the first identified DNA backbone modification and constitute an epigenetic system with multiple functions, including antioxidant ability, restriction modification, and virus resistance. Despite these advantages for hosting dnd systems, they are surprisingly distributed sporadically among contemporary prokaryotic genomes. To address this ecological paradox, we systematically investigate the occurrence and phylogeny of dnd systems, and they are suggested to have originated in ancient Cyanobacteria after the Great Oxygenation Event. Interestingly, the occurrence of dnd systems and prophages is significantly negatively correlated. Further, we experimentally confirm that PT modification activates the filamentous phage SW1 by altering the binding affinity of repressor and the transcription level of its encoding gene. Competition assays, concurrent epigenomic and transcriptomic sequencing subsequently show that PT modification affects the expression of a variety of metabolic genes, which reduces the competitive fitness of the marine bacterium Shewanella piezotolerans WP3. Our findings strongly suggest that a series of negative effects on microorganisms caused by dnd systems limit horizontal gene transfer, thus leading to their sporadic distribution. Overall, our study reveals putative evolutionary scenario of the dnd system and provides novel insights into the physiological and ecological influences of PT modification.

12.
Commun Biol ; 4(1): 1335, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824369

RESUMO

DNA phosphorothioation (PT) is widely distributed in the human gut microbiome. In this work, PT-diet effect on nematodes was studied with PT-bioengineering bacteria. We found that the ROS level decreased by about 20-50% and the age-related lipofuscin accumulation was reduced by 15-25%. Moreover, the PT-feeding worms were more active at all life periods, and more resistant to acute stressors. Intriguingly, their lifespans were prolonged by ~21.7%. Comparative RNA-seq analysis indicated that many gene expressions were dramatically regulated by PT-diet, such as cysteine-rich protein (scl-11/12/13), sulfur-related enzyme (cpr-2), longevity gene (jnk-1) and stress response (sod-3/5, gps-5/6, gst-18/20, hsp-12.8). Both the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that neuroactivity pathways were upregulated, while phosphoryl transfer and DNA-repair pathways were down-regulated in good-appetite young worms. The findings pave the way for pro-longevity of multicellular organisms by PT-bacterial interference.

13.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833880

RESUMO

Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein-protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes mitE, mmcB, mitB, and mitF were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein-protein interactions, the in vitro pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein-protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.

14.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 3711-3716, 2021 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-34841778

RESUMO

Human microbiome is comprised of symbiotic microorganisms in the human body, whose dynamic balance is closely related to human health, and is recognized as important "organs" that can regulate immunity, metabolism and other aspects in human body, and is associated with functions of many organs including lung, intestine, vagina and brain, becoming a potential target for the treatment of cancer, coronary heart disease, neurological diseases and other difficult diseases. In recent years, with the rapid development of microbiome sequencing and analysis technology, it has become an international focus and forefront to discover the relationship between human microorganisms and many diseases, as well as target for new treatment methods. Thus, we organized this special issue and publish reviews on study methodology, human disease and microbiome as well as therapeutic strategies, and provide important information to advance microbiome research in China.


Assuntos
Microbiota , Neoplasias , China , Humanos , Intestinos , Pulmão
15.
Metab Eng ; 69: 122-133, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34781019

RESUMO

Plant-derived natural active products have attracted increasing attention for use in flavors and perfumes. These compounds also have applications in insect pest control because of their environment-friendly properties. Holy basil (Ocimum sanctum), a famous herb used in Ayurveda in India, is a natural source of medical healing agents and insecticidal repellents. Despite the available genomic sequences and genome-wide bioinformatic analysis of terpene synthase genes, the functionality of the sesquiterpene genes involved in the unique fragrance and insecticidal activities of Holy basil are largely unknown. In this study, we systematically screened the sesquiterpenoid biosynthesis genes in this plant using a precursor-providing yeast system. The enzymes that synthesize ß-caryophyllene and its close isomer α-humulene were successfully identified. The enzymatic product of OsaTPS07 was characterized by in vivo mining, in vitro reaction, and NMR detection. This product was revealed as (-)-eremophilene. We created a mutant yeast strain that can achieve a high-yield titer by adjusting the gene copy number and FPP precursor enhancement. An optimized two-stage fed-batch fermentation method achieved high biosynthetic capacity, with a titer of 34.6 g/L cyclic sesquiterpene bioproduction in a 15-L bioreactor. Further insect-repelling assays demonstrated that (-)-eremophilene repelled the insect pest, fall leafworm, suggesting the potential of (-)-eremophilene as an alternative to synthetic chemicals for agricultural pest control. This study highlights the potential of our microbial platform for the bulk mining of plant-derived ingredients and provides an impressive cornerstone for their industrial utilization.

16.
Interdiscip Sci ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817803

RESUMO

In 2002, our research group observed a gene clustering pattern based on the base frequency of A versus T at the second codon position in the genome of Vibrio cholera and found that the functional category distribution of genes in the two clusters was different. With the availability of a large number of sequenced genomes, we performed a systematic investigation of A2-T2 distribution and found that 2694 out of 2764 prokaryotic genomes have an optimal clustering number of two, indicating a consistent pattern. Analysis of the functional categories of the coding genes in each cluster in 1483 prokaryotic genomes indicated, that 99.33% of the genomes exhibited a significant difference (p < 0.01) in function distribution between the two clusters. Specifically, functional category P was overrepresented in the small cluster of 98.65% of genomes, whereas categories J, K, and L were overrepresented in the larger cluster of over 98.52% of genomes. Lineage analysis uncovered that these preferences appear consistently across all phyla. Overall, our work revealed an almost universal clustering pattern based on the relative frequency of A2 versus T2 and its role in functional category preference. These findings will promote the understanding of the rationality of theoretical prediction of functional classes of genes from their nucleotide sequences and how protein function is determined by DNA sequence.

17.
Nat Commun ; 12(1): 6633, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789759

RESUMO

Angustmycin A has anti-mycobacterial and cytokinin activities, and contains an intriguing structure in which an unusual sugar with C5'-C6' dehydration is linked to adenine via an N-glycosidic bond. However, the logic underlying the biosynthesis of this molecule has long remained obscure. Here, we address angustmycin A biosynthesis by the full deciphering of its pathway. We demonstrate that AgmD, C, A, E, and B function as D-allulose 6-phosphate 3-epimerase, D-allulose 6-phosphate pyrophosphokinase, adenine phosphoallulosyltransferase, phosphoribohydrolase, and phosphatase, respectively, and that these collaboratively catalyze the relay reactions to biosynthesize angustmycin C. Additionally, we provide evidence that AgmF is a noncanonical dehydratase for the final step to angustmycin A via a self-sufficient strategy for cofactor recycling. Finally, we have reconstituted the entire six-enzyme pathway in vitro and in E. coli leading to angustmycin A production. These results expand the enzymatic repertoire regarding natural product biosynthesis, and also open the way for rational and rapid discovery of other angustmycin related antibiotics.

19.
Brief Bioinform ; 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34657153

RESUMO

Bacterial type IV secretion systems (T4SSs) are versatile and membrane-spanning apparatuses, which mediate both genetic exchange and delivery of effector proteins to target eukaryotic cells. The secreted effectors (T4SEs) can affect gene expression and signal transduction of the host cells. As such, they often function as virulence factors and play an important role in bacterial pathogenesis. Nowadays, T4SE prediction tools have utilized various machine learning algorithms, but the accuracy and speed of these tools remain to be improved. In this study, we apply a sequence embedding strategy from a pre-trained language model of protein sequences (TAPE) to the classification task of T4SEs. The training dataset is mainly derived from our updated type IV secretion system database SecReT4 with newly experimentally verified T4SEs. An online web server termed T4SEfinder is developed using TAPE and a multi-layer perceptron (MLP) for T4SE prediction after a comprehensive performance comparison with several candidate models, which achieves a slightly higher level of accuracy than the existing prediction tools. It only takes about 3 minutes to make a classification for 5000 protein sequences by T4SEfinder so that the computational speed is qualified for whole genome-scale T4SEs detection in pathogenic bacteria. T4SEfinder might contribute to meet the increasing demands of re-annotating secretion systems and effector proteins in sequenced bacterial genomes. T4SEfinder is freely accessible at https://tool2-mml.sjtu.edu.cn/T4SEfinder_TAPE/.

20.
Chem Rev ; 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664951

RESUMO

In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...