Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 708740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276802

RESUMO

Specific local environmental and sociocultural conditions have led to the creation of various goat populations in Russia. National goat diversity includes breeds that have been selected for down and mohair production traits as well as versatile local breeds for which pastoralism is the main management system. Effective preservation and breeding programs for local goat breeds are missing due to the lack of DNA-based data. In this work, we analyzed the genetic diversity and population structure of Russian local goats, including Altai Mountain, Altai White Downy, Dagestan Downy, Dagestan Local, Karachaev, Orenburg, and Soviet Mohair goats, which were genotyped with the Illumina Goat SNP50 BeadChip. In addition, we addressed genetic relationships between local and global goat populations obtained from the AdaptMap project. Russian goats showed a high level of genetic diversity. Although a decrease in historical effective population sizes was revealed, the recent effective population sizes estimated for three generations ago were larger than 100 in all studied populations. The mean runs of homozygosity (ROH) lengths ranged from 79.42 to 183.94 Mb, and the average ROH number varied from 18 to 41. Short ROH segments (<2 Mb) were predominant in all breeds, while the longest ROH class (>16 Mb) was the least frequent. Principal component analysis, Neighbor-Net graph, and Admixture clustering revealed several patterns in Russian local goats. First, a separation of the Karachaev breed from other populations was observed. Moreover, genetic connections between the Orenburg and Altai Mountain breeds were suggested and the Dagestan breeds were found to be admixed with the Soviet Mohair breed. Neighbor-Net analysis and clustering of local and global breeds demonstrated the close genetic relations between Russian local and Turkish breeds that probably resulted from past admixture events through postdomestication routes. Our findings contribute to the understanding of the genetic relationships of goats originating in West Asia and Eurasia and may be used to design breeding programs for local goats to ensure their effective conservation and proper management.

2.
Genes (Basel) ; 12(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802939

RESUMO

Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.


Assuntos
Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Carneiro Doméstico/classificação , Animais , Teorema de Bayes , Cruzamento , Efeito Fundador , Genótipo , Seleção Genética , Ovinos , Carneiro Doméstico/genética , Suécia
3.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941615

RESUMO

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Assuntos
Adaptação Biológica/genética , Resistência à Doença/genética , Introgressão Genética , Ovinos/genética , Animais , Evolução Biológica , Mudança Climática , Variação Genética , Filogeografia , Pneumonia/imunologia , Ovinos/imunologia
4.
Mitochondrial DNA B Resour ; 5(3): 3645-3646, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33367043

RESUMO

Karachaev goat (Capra hircus) is a local breed from North-Caucasus region, Russia. Here we present complete mitochondrial genome of Karachaev goat from the republic of Karachaevo-Cherkessia, Russia. The length of the studied sequence was 16,624 bp in size. It was shown that the studied specimen belonged to haplogroup A.

5.
BMC Genomics ; 20(Suppl 3): 294, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32039702

RESUMO

BACKGROUND: Domestication and centuries of selective breeding have changed genomes of sheep breeds to respond to environmental challenges and human needs. The genomes of local breeds, therefore, are valuable sources of genomic variants to be used to understand mechanisms of response to adaptation and artificial selection. As a step toward this we performed a high-density genotyping and comprehensive scans for signatures of selection in the genomes from 15 local sheep breeds reared across Russia. RESULTS: Results demonstrated that the genomes of Russian sheep breeds contain multiple regions under putative selection. More than 50% of these regions matched with intervals identified in previous scans for selective sweeps in sheep genomes. These regions contain well-known candidate genes related to morphology, adaptation, and domestication (e.g., KITLG, KIT, MITF, and MC1R), wool quality and quantity (e.g., DSG@, DSC@, and KRT@), growth and feed intake (e.g., HOXA@, HOXC@, LCORL, NCAPG, LAP3, and CCSER1), reproduction (e.g., CMTM6, HTRA1, GNAQ, UBQLN1, and IFT88), and milk-related traits (e.g., ABCG2, SPP1, ACSS1, and ACSS2). In addition, multiple genes that are putatively related to environmental adaptations were top-ranked in selected intervals (e.g., EGFR, HSPH1, NMUR1, EDNRB, PRL, TSHR, and ADAMTS5). Moreover, we observed that multiple key genes involved in human hereditary sensory and autonomic neuropathies, and genetic disorders accompanied with an inability to feel pain and environmental temperatures, were top-ranked in multiple or individual sheep breeds from Russia pointing to a possible mechanism of adaptation to harsh climatic conditions. CONCLUSIONS: Our work represents the first comprehensive scan for signatures of selection in genomes of local sheep breeds from the Russian Federation of both European and Asian origins. We confirmed that the genomes of Russian sheep contain previously identified signatures of selection, demonstrating the robustness of our integrative approach. Multiple novel signatures of selection were found near genes which could be related to adaptation to the harsh environments of Russia. Our study forms a basis for future work on using Russian sheep genomes to spot specific genetic variants or haplotypes to be used in efforts on developing next-generation highly productive breeds, better suited to diverse Eurasian environments.


Assuntos
Aclimatação/genética , Técnicas de Genotipagem , Ovinos/genética , Ovinos/fisiologia , Animais , Cruzamento , Feminino , Lactação/genética , Leite/metabolismo , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodução/genética , Federação Russa , Ovinos/anatomia & histologia , Ovinos/metabolismo
6.
Ecol Evol ; 8(16): 8000-8010, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250679

RESUMO

Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge-Tiksi Bay (TIK, n = 22), Orulgan Ridge (ORU, n = 22), the central part of Verkhoyansk Range (VER, n = 15), Suntar-Khayata Ridge (SKH, n = 13), and Momsky Ridge (MOM, n = 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified K = 2 as the most likely number of ancestral populations. A Neighbor-Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population-TIK, and maximum values were observed in the most southern population-SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.

7.
Genet Sel Evol ; 50(1): 37, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996786

RESUMO

BACKGROUND: The origin of native and locally developed Russian cattle breeds is linked to the historical, social, cultural, and climatic features of the diverse geographical regions of Russia. In the present study, we investigated the population structure of nine Russian cattle breeds and their relations to the cattle breeds from around the world to elucidate their origin. Genotyping of single nucleotide polymorphisms (SNPs) in Bestuzhev (n = 26), Russian Black-and-White (n = 21), Kalmyk (n = 14), Kholmogor (n = 25), Kostromsky (n = 20), Red Gorbatov (n = 23), Suksun (n = 20), Yakut (n = 25), and Yaroslavl cattle breeds (n = 21) was done using the Bovine SNP50 BeadChip. SNP profiles from an additional 70 breeds were included in the analysis as references. RESULTS: The observed heterozygosity levels were quite similar in eight of the nine studied breeds (HO = 0.337-0.363) except for Yakut (Ho = 0.279). The inbreeding coefficients FIS ranged from -0.028 for Kalmyk to 0.036 for Russian Black-and-White and were comparable to those of the European breeds. The nine studied Russian breeds exhibited taurine ancestry along the C1 axis of the multidimensional scaling (MDS)-plot, but Yakut was clearly separated from the European taurine breeds on the C2 axis. Neighbor-Net and admixture analyses, discriminated three groups among the studied Russian breeds. Yakut and Kalmyk were assigned to a separate group because of their Turano-Mongolian origin. Russian Black-and-White, Kostromsky and Suksun showed transboundary European ancestry, which originated from the Holstein, Brown Swiss, and Danish Red breeds, respectively. The lowest level of introgression of transboundary breeds was recorded for the Kholmogor, Yaroslavl, Red Gorbatov and Bestuzhev breeds, which can be considered as an authentic genetic resource. CONCLUSIONS: Whole-genome SNP analysis revealed that Russian native and locally developed breeds have conserved authentic genetic patterns in spite of the considerable influence of Eurasian taurine cattle. In this paper, we provide fundamental genomic information that will contribute to the development of more accurate breed conservation programs and genetic improvement strategies.


Assuntos
Bovinos/classificação , Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/veterinária , Animais , Bovinos/genética , Genética Populacional , Heterozigoto , Endogamia , Federação Russa
8.
Genet Sel Evol ; 50(1): 29, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793424

RESUMO

BACKGROUND: Russia has a diverse variety of native and locally developed sheep breeds with coarse, fine, and semi-fine wool, which inhabit different climate zones and landscapes that range from hot deserts to harsh northern areas. To date, no genome-wide information has been used to investigate the history and genetic characteristics of the extant local Russian sheep populations. To infer the population structure and genome-wide diversity of Russian sheep, 25 local breeds were genotyped with the OvineSNP50 BeadChip. Furthermore, to evaluate admixture contributions from foreign breeds in Russian sheep, a set of 58 worldwide breeds from publicly available genotypes was added to our data. RESULTS: We recorded similar observed heterozygosity (0.354-0.395) and allelic richness (1.890-1.955) levels across the analyzed breeds and they are comparable with those observed in the worldwide breeds. Recent effective population sizes estimated from linkage disequilibrium five generations ago ranged from 65 to 543. Multi-dimensional scaling, admixture, and neighbor-net analyses consistently identified a two-step subdivision of the Russian local sheep breeds. A first split clustered the Russian sheep populations according to their wool type (fine wool, semi-fine wool and coarse wool). The Dagestan Mountain and Baikal fine-fleeced breeds differ from the other Merino-derived local breeds. The semi-fine wool cluster combined a breed of Romanian origin, Tsigai, with its derivative Altai Mountain, the two Romney-introgressed breeds Kuibyshev and North Caucasian, and the Lincoln-introgressed Russian longhaired breed. The coarse-wool group comprised the Nordic short-tailed Romanov, the long-fat-tailed outlier Kuchugur and two clusters of fat-tailed sheep: the Caucasian Mountain breeds and the Buubei, Karakul, Edilbai, Kalmyk and Tuva breeds. The Russian fat-tailed breeds shared co-ancestry with sheep from China and Southwestern Asia (Iran). CONCLUSIONS: In this study, we derived the genetic characteristics of the major Russian local sheep breeds, which are moderately diverse and have a strong population structure. Pooling our data with a worldwide genotyping set gave deeper insight into the history and origin of the Russian sheep populations.


Assuntos
Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Sequenciamento Completo do Genoma/veterinária , Animais , Cruzamento , Genética Populacional , Heterozigoto , Característica Quantitativa Herdável , Federação Russa ,
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...