Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 55(92): 13804-13807, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633709

RESUMO

Methyl carboxylate esters can be used as additives to promote the zeolite catalysed formation of dimethly ether (DME) from methanol. By taking advantage of the well-known confinement effect in combination with further functionalisation the potency of the promoter can be markedly enhanced, giving significant increases in DME yield at promoter concentrations as low as 10 ppm relative to methanol. The promotion is readily reversible and promoter concentration can be used to fine tune the zeolite productivity to DME.

3.
J Phys Chem A ; 118(30): 5680-91, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25003240

RESUMO

The microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.2) × 10(-3) Pa. Variation in the refractive index (RI) of an aqueous MA droplet with relative humidity (RH) allowed the subcooled liquid RI of MA to be estimated as 1.481 ± 0.001. Measurements of the hygroscopic growth are shown to be consistent with equilibrium model predictions from previous studies. Simultaneous measurements of the droplet composition, size, and refractive index have been made during ozonolysis at RHs in the range 50-80%, providing insight into the volatility of organic products, changes in the droplet hygroscopicity, and optical properties. Exposure of the aqueous droplets to ozone leads to the formation of products with a wide range of volatilities spanning from involatile to volatile. Reactive uptake coefficients show a weak dependence on ozone concentration, but no dependence on RH or salt concentration. The time evolving RI depends significantly on the RH at which the oxidation proceeds and can even show opposing trends; while the RI increases with ozone exposure at low relative humidity, the RI decreases when the oxidation proceeds at high relative humidity. The variations in RI are broadly consistent with a framework for predicting RIs for organic components published by Cappa et al. ( J. Geophys. Res. 2011 , 116 , D15204 ). Once oxidized, particles are shown to form amorphous phases on drying rather than crystallization, with slow evaporation kinetics of residual water.

4.
J Phys Chem A ; 116(24): 6159-68, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22236112

RESUMO

Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.


Assuntos
Ácido Oleico/química , Ozônio/química , Cloreto de Sódio/química , Água/química , Aerossóis/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
5.
Phys Chem Chem Phys ; 13(34): 15559-72, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21811727

RESUMO

The morphology of bi-phase aerosol particles containing phase separated hydrophobic and hydrophilic components is considered, comparing simulations based on surface and interfacial tensions with measurements made by aerosol optical tweezers. The competition between the liquid phases adopting core-shell and partially engulfed configurations is considered for a range of organic compounds including saturated and unsaturated hydrocarbons, aromatics, alcohols, ketones, carboxylic acids, esters and amines. When the solubility of the organic component and the salting-out of the organic component to the surface by the presence of concentrated inorganic solutes in the aqueous phase are considered, it is concluded that the adoption of a partially engulfed structure predominates, with the organic component forming a surface lens. The aqueous surface can be assumed to be stabilised by a surface enriched in the organic component. The existence of acid-base equilibria can lead to the dissociation of organic surfactants and to significant lowering of the surface tension of the aqueous phase, further supporting the predominance of partially engulfed structures. Trends in morphology from experimental measurements and simulations are compared for mixed phased droplets in which the organic component is decane, 1-octanol or oleic acid with varying relative humidity. The consequences of partially engulfed structures for aerosol properties are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA