Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
World J Surg ; 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605180

RESUMO

BACKGROUND: The extent to which obesity and genetics determine postoperative complications is incompletely understood. METHODS: We performed a retrospective study using two population cohorts with electronic health record (EHR) data. The first included 736,726 adults with body mass index (BMI) recorded between 1990 and 2017 at Vanderbilt University Medical Center. The second cohort consisted of 65,174 individuals from 12 institutions contributing EHR and genome-wide genotyping data to the Electronic Medical Records and Genomics (eMERGE) Network. Pairwise logistic regression analyses were used to measure the association of BMI categories with postoperative complications derived from International Classification of Disease-9 codes, including postoperative infection, incisional hernia, and intestinal obstruction. A genetic risk score was constructed from 97 obesity-risk single-nucleotide polymorphisms for a Mendelian randomization study to determine the association of genetic risk of obesity on postoperative complications. Logistic regression analyses were adjusted for sex, age, site, and race/principal components. RESULTS: Individuals with overweight or obese BMI (≥25 kg/m2) had increased risk of incisional hernia (odds ratio [OR] 1.7-5.5, p < 3.1 × 10-20), and people with obesity (BMI ≥ 30 kg/m2) had increased risk of postoperative infection (OR 1.2-2.3, p < 2.5 × 10-5). In the eMERGE cohort, genetically predicted BMI was associated with incisional hernia (OR 2.1 [95% CI 1.8-2.5], p = 1.4 × 10-6) and postoperative infection (OR 1.6 [95% CI 1.4-1.9], p = 3.1 × 10-6). Association findings were similar after limitation of the cohorts to those who underwent abdominal procedures. CONCLUSIONS: Clinical and Mendelian randomization studies suggest that obesity, as measured by BMI, is associated with the development of postoperative incisional hernia and infection.

2.
Pharmacogenomics ; 20(15): 1103-1112, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31588877

RESUMO

Pharmacogenetic testing can help identify primary care patients at increased risk for medication toxicity, poor response or treatment failure and inform drug therapy. While testing availability is increasing, providers are unprepared to routinely use pharmacogenetic testing for clinical decision-making. Practice-based resources are needed to overcome implementation barriers for pharmacogenetic testing in primary care.The NHGRI's IGNITE I Network (Implementing GeNomics In pracTicE; www.ignite-genomics.org) explored practice models, challenges and implementation barriers for clinical pharmacogenomics. Based on these experiences, we present a stepwise approach pharmacogenetic testing in primary care: patient identification; pharmacogenetic test ordering; interpretation and application of test results, and patient education. We present clinical factors to consider, test-ordering processes and resources, and provide guidance to apply test results and counsel patients. Practice-based resources such as this stepwise approach to clinical decision-making are important resources to equip primary care providers to use pharmacogenetic testing.

3.
PLoS Med ; 16(10): e1002937, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31626644

RESUMO

BACKGROUND: The role of urate in cardiovascular diseases (CVDs) has been extensively investigated in observational studies; however, the extent of any causal effect remains unclear, making it difficult to evaluate its clinical relevance. METHODS AND FINDINGS: A phenome-wide association study (PheWAS) together with a Bayesian analysis of tree-structured phenotypic model (TreeWAS) was performed to examine disease outcomes related to genetically determined serum urate levels in 339,256 unrelated White British individuals (54% female) in the UK Biobank who were aged 40-69 years (mean age, 56.87; SD, 7.99) when recruited from 2006 to 2010. Mendelian randomization (MR) analyses were performed to replicate significant findings using various genome-wide association study (GWAS) consortia data. Sensitivity analyses were conducted to examine possible pleiotropic effects on metabolic traits of the genetic variants used as instruments for urate. PheWAS analysis, examining the association with 1,431 disease outcomes, identified 13 distinct phecodes representing 4 disease groups (inflammatory polyarthropathies, hypertensive disease, circulatory disease, and metabolic disorders) and 9 disease outcomes (gout, gouty arthropathy, pyogenic arthritis, essential hypertension, coronary atherosclerosis, ischemic heart disease, chronic ischemic heart disease, myocardial infarction, and hypercholesterolemia) that were associated with genetically determined serum urate levels after multiple testing correction (p < 3.35 × 10-4). TreeWAS analysis, examining 10,750 ICD-10 diagnostic terms, identified more sub-phenotypes of cardiovascular and cerebrovascular diseases (e.g., angina pectoris, heart failure, cerebral infarction). MR analysis successfully replicated the association with gout, hypertension, heart diseases, and blood lipid levels but indicated the existence of genetic pleiotropy. Sensitivity analyses support an inference that pleiotropic effects of genetic variants on urate and metabolic traits contribute to the observational associations with CVDs. The main limitations of this study relate to possible bias from pleiotropic effects of the considered genetic variants and possible misclassification of cases for mild disease that did not require hospitalization. CONCLUSION: In this study, high serum urate levels were found to be associated with increased risk of different types of cardiac events. The finding of genetic pleiotropy indicates the existence of common upstream pathological elements influencing both urate and metabolic traits, and this may suggest new opportunities and challenges for developing drugs targeting a common mediator that would be beneficial for both the treatment of gout and the prevention of cardiovascular comorbidities.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31609419

RESUMO

OBJECTIVE: The Phenotype Risk Score (PheRS) is a method to detect Mendelian disease patterns using phenotypes from the electronic health record (EHR). We compared the performance of different approaches mapping EHR phenotypes to Mendelian disease features. MATERIALS AND METHODS: PheRS utilizes Mendelian diseases descriptions annotated with Human Phenotype Ontology (HPO) terms. In previous work, we presented a map linking phecodes (based on International Classification of Diseases [ICD]-Ninth Revision) to HPO terms. For this study, we integrated ICD-Tenth Revision codes and lab data. We also created a new map between HPO terms using customized groupings of ICD codes. We compared the performance with cases and controls for 16 Mendelian diseases using 2.5 million de-identified medical records. RESULTS: PheRS effectively distinguished cases from controls for all 15 positive controls and all approaches tested (P < 4 × 1016). Adding lab data led to a statistically significant improvement for 4 of 14 diseases. The custom ICD groupings improved specificity, leading to an average 8% increase for precision at 100 (-2% to 22%). Eight of 10 adults with cystic fibrosis tested had PheRS in the 95th percentile prio to diagnosis. DISCUSSION: Both phecodes and custom ICD groupings were able to detect differences between affected cases and controls at the population level. The ICD map showed better precision for the highest scoring individuals. Adding lab data improved performance at detecting population-level differences. CONCLUSIONS: PheRS is a scalable method to study Mendelian disease at the population level using electronic health record data and can potentially be used to find patients with undiagnosed Mendelian disease.

5.
Int J Epidemiol ; 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31518429

RESUMO

BACKGROUND: Vitamin D deficiency is highly prevalent across the globe. Existing studies suggest that a low vitamin D level is associated with more than 130 outcomes. Exploring the causal role of vitamin D in health outcomes could support or question vitamin D supplementation. METHODS: We carried out a systematic literature review of previous Mendelian-randomization studies on vitamin D. We then implemented a Mendelian Randomization-Phenome Wide Association Study (MR-PheWAS) analysis on data from 339 256 individuals of White British origin from UK Biobank. We first ran a PheWAS analysis to test the associations between a 25(OH)D polygenic risk score and 920 disease outcomes, and then nine phenotypes (i.e. systolic blood pressure, diastolic blood pressure, risk of hypertension, T2D, ischaemic heart disease, body mass index, depression, non-vertebral fracture and all-cause mortality) that met the pre-defined inclusion criteria for further analysis were examined by multiple MR analytical approaches to explore causality. RESULTS: The PheWAS analysis did not identify any health outcome associated with the 25(OH)D polygenic risk score. Although a selection of nine outcomes were reported in previous Mendelian-randomization studies or umbrella reviews to be associated with vitamin D, our MR analysis, with substantial study power (>80% power to detect an association with an odds ratio >1.2 for per standard deviation increase of log-transformed 25[OH]D), was unable to support an interpretation of causal association. CONCLUSIONS: We investigated the putative causal effects of vitamin D on multiple health outcomes in a White population. We did not support a causal effect on any of the disease outcomes tested. However, we cannot exclude small causal effects or effects on outcomes that we did not have enough power to explore due to the small number of cases.

6.
JMIR Med Inform ; 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31553307

RESUMO

BACKGROUND: The PheCode system was built upon the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) for phenome-wide association studies (PheWAS) in the electronic health record (EHR). OBJECTIVE: Here, we present our work on the development and evaluation of maps from ICD-10 and ICD-10-CM codes to PheCodes. METHODS: We mapped ICD-10 and ICD-10-CM codes to PheCodes using a number of methods and resources, such as concept relationships and explicit mappings from the Unified Medical Language System (UMLS), Observational Health Data Sciences and Informatics (OHDSI), Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), and National Library of Medicine (NLM). We assessed the coverage of the maps in two databases: Vanderbilt University Medical Center (VUMC) using ICD-10-CM and the UK Biobank (UKBB) using ICD-10. We assessed the fidelity of the ICD-10-CM map in comparison to the gold-standard ICD-9-CM→PheCode map by investigating phenotype reproducibility and conducting a PheWAS. RESULTS: We mapped >75% of ICD-10-CM and ICD-10 codes to PheCodes. Of the unique codes observed in the VUMC (ICD-10-CM) and UKBB (ICD-10) cohorts, >90% were mapped to PheCodes. We observed 70-75% reproducibility for chronic diseases and <10% for an acute disease. A PheWAS with a lipoprotein(a) (LPA) genetic variant, rs10455872, using the ICD-9-CM and ICD-10-CM maps replicated two genotype-phenotype associations with similar effect sizes: coronary atherosclerosis (ICD-9-CM: P < .001, OR = 1.60 vs. ICD-10-CM: P < .001, OR = 1.60) and with chronic ischemic heart disease (ICD-9-CM: P < .001, OR = 1.5 vs. ICD-10-CM: P < .001, OR = 1.47). CONCLUSIONS: This study introduces the initial "beta" versions of ICD-10 and ICD-10-CM to PheCode maps that will enable researchers to leverage accumulated ICD-10 and ICD-10-CM data for high-throughput PheWAS in the EHR.

7.
J Biomed Inform ; 99: 103293, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31542521

RESUMO

BACKGROUND: Implementation of phenotype algorithms requires phenotype engineers to interpret human-readable algorithms and translate the description (text and flowcharts) into computable phenotypes - a process that can be labor intensive and error prone. To address the critical need for reducing the implementation efforts, it is important to develop portable algorithms. METHODS: We conducted a retrospective analysis of phenotype algorithms developed in the Electronic Medical Records and Genomics (eMERGE) network and identified common customization tasks required for implementation. A novel scoring system was developed to quantify portability from three aspects: Knowledge conversion, clause Interpretation, and Programming (KIP). Tasks were grouped into twenty representative categories. Experienced phenotype engineers were asked to estimate the average time spent on each category and evaluate time saving enabled by a common data model (CDM), specifically the Observational Medical Outcomes Partnership (OMOP) model, for each category. RESULTS: A total of 485 distinct clauses (phenotype criteria) were identified from 55 phenotype algorithms, corresponding to 1153 customization tasks. In addition to 25 non-phenotype-specific tasks, 46 tasks are related to interpretation, 613 tasks are related to knowledge conversion, and 469 tasks are related to programming. A score between 0 and 2 (0 for easy, 1 for moderate, and 2 for difficult portability) is assigned for each aspect, yielding a total KIP score range of 0 to 6. The average clause-wise KIP score to reflect portability is 1.37 ±â€¯1.38. Specifically, the average knowledge (K) score is 0.64 ±â€¯0.66, interpretation (I) score is 0.33 ±â€¯0.55, and programming (P) score is 0.40 ±â€¯0.64. 5% of the categories can be completed within one hour (median). 70% of the categories take from days to months to complete. The OMOP model can assist with vocabulary mapping tasks. CONCLUSION: This study presents firsthand knowledge of the substantial implementation efforts in phenotyping and introduces a novel metric (KIP) to measure portability of phenotype algorithms for quantifying such efforts across the eMERGE Network. Phenotype developers are encouraged to analyze and optimize the portability in regards to knowledge, interpretation and programming. CDMs can be used to improve the portability for some 'knowledge-oriented' tasks.

8.
J Biomed Inform ; 98: 103270, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31445983

RESUMO

OBJECTIVE: Discovering subphenotypes of complex diseases can help characterize disease cohorts for investigative studies aimed at developing better diagnoses and treatments. Recent advances in unsupervised machine learning on electronic health record (EHR) data have enabled researchers to discover phenotypes without input from domain experts. However, most existing studies have ignored time and modeled diseases as discrete events. Uncovering the evolution of phenotypes - how they emerge, evolve and contribute to health outcomes - is essential to define more precise phenotypes and refine the understanding of disease progression. Our objective was to assess the benefits of an unsupervised approach that incorporates time to model diseases as dynamic processes in phenotype discovery. METHODS: In this study, we applied a constrained non-negative tensor-factorization approach to characterize the complexity of cardiovascular disease (CVD) patient cohort based on longitudinal EHR data. Through tensor-factorization, we identified a set of phenotypic topics (i.e., subphenotypes) that these patients established over the 10 years prior to the diagnosis of CVD, and showed the progress pattern. For each identified subphenotype, we examined its association with the risk for adverse cardiovascular outcomes estimated by the American College of Cardiology/American Heart Association Pooled Cohort Risk Equations, a conventional CVD-risk assessment tool frequently used in clinical practice. Furthermore, we compared the subsequent myocardial infarction (MI) rates among the six most prevalent subphenotypes using survival analysis. RESULTS: From a cohort of 12,380 adult CVD individuals with 1068 unique PheCodes, we successfully identified 14 subphenotypes. Through the association analysis with estimated CVD risk for each subtype, we found some phenotypic topics such as Vitamin D deficiency and depression, Urinary infections cannot be explained by the conventional risk factors. Through a survival analysis, we found markedly different risks of subsequent MI following the diagnosis of CVD among the six most prevalent topics (p < 0.0001), indicating these topics may capture clinically meaningful subphenotypes of CVD. CONCLUSION: This study demonstrates the potential benefits of using tensor-decomposition to model diseases as dynamic processes from longitudinal EHR data. Our results suggest that this data-driven approach may potentially help researchers identify complex and chronic disease subphenotypes in precision medicine research.

10.
N Engl J Med ; 381(7): 668-676, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412182

RESUMO

Knowledge gained from observational cohort studies has dramatically advanced the prevention and treatment of diseases. Many of these cohorts, however, are small, lack diversity, or do not provide comprehensive phenotype data. The All of Us Research Program plans to enroll a diverse group of at least 1 million persons in the United States in order to accelerate biomedical research and improve health. The program aims to make the research results accessible to participants, and it is developing new approaches to generate, access, and make data broadly available to approved researchers. All of Us opened for enrollment in May 2018 and currently enrolls participants 18 years of age or older from a network of more than 340 recruitment sites. Elements of the program protocol include health questionnaires, electronic health records (EHRs), physical measurements, the use of digital health technology, and the collection and analysis of biospecimens. As of July 2019, more than 175,000 participants had contributed biospecimens. More than 80% of these participants are from groups that have been historically underrepresented in biomedical research. EHR data on more than 112,000 participants from 34 sites have been collected. The All of Us data repository should permit researchers to take into account individual differences in lifestyle, socioeconomic factors, environment, and biologic characteristics in order to advance precision diagnosis, prevention, and treatment.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Estudos de Coortes , Conjuntos de Dados como Assunto , Registros Eletrônicos de Saúde , Inquéritos Epidemiológicos , Humanos , Estudos Observacionais como Assunto , Medicina de Precisão , Projetos de Pesquisa , Estados Unidos
11.
J Biomed Inform ; 96: 103253, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31325501

RESUMO

BACKGROUND: Implementing clinical phenotypes across a network is labor intensive and potentially error prone. Use of a common data model may facilitate the process. METHODS: Electronic Medical Records and Genomics (eMERGE) sites implemented the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model across their electronic health record (EHR)-linked DNA biobanks. Two previously implemented eMERGE phenotypes were converted to OMOP and implemented across the network. RESULTS: It was feasible to implement the common data model across sites, with laboratory data producing the greatest challenge due to local encoding. Sites were then able to execute the OMOP phenotype in less than one day, as opposed to weeks of effort to manually implement an eMERGE phenotype in their bespoke research EHR databases. Of the sites that could compare the current OMOP phenotype implementation with the original eMERGE phenotype implementation, specific agreement ranged from 100% to 43%, with disagreements due to the original phenotype, the OMOP phenotype, changes in data, and issues in the databases. Using the OMOP query as a standard comparison revealed differences in the original implementations despite starting from the same definitions, code lists, flowcharts, and pseudocode. CONCLUSION: Using a common data model can dramatically speed phenotype implementation at the cost of having to populate that data model, though this will produce a net benefit as the number of phenotype implementations increases. Inconsistencies among the implementations of the original queries point to a potential benefit of using a common data model so that actual phenotype code and logic can be shared, mitigating human error in reinterpretation of a narrative phenotype definition.

12.
J Am Med Inform Assoc ; 26(11): 1314-1322, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294792

RESUMO

OBJECTIVE: Active Learning (AL) attempts to reduce annotation cost (ie, time) by selecting the most informative examples for annotation. Most approaches tacitly (and unrealistically) assume that the cost for annotating each sample is identical. This study introduces a cost-aware AL method, which simultaneously models both the annotation cost and the informativeness of the samples and evaluates both via simulation and user studies. MATERIALS AND METHODS: We designed a novel, cost-aware AL algorithm (Cost-CAUSE) for annotating clinical named entities; we first utilized lexical and syntactic features to estimate annotation cost, then we incorporated this cost measure into an existing AL algorithm. Using the 2010 i2b2/VA data set, we then conducted a simulation study comparing Cost-CAUSE with noncost-aware AL methods, and a user study comparing Cost-CAUSE with passive learning. RESULTS: Our cost model fit empirical annotation data well, and Cost-CAUSE increased the simulation area under the learning curve (ALC) scores by up to 5.6% and 4.9%, compared with random sampling and alternate AL methods. Moreover, in a user annotation task, Cost-CAUSE outperformed passive learning on the ALC score and reduced annotation time by 20.5%-30.2%. DISCUSSION: Although AL has proven effective in simulations, our user study shows that a real-world environment is far more complex. Other factors have a noticeable effect on the AL method, such as the annotation accuracy of users, the tiredness of users, and even the physical and mental condition of users. CONCLUSION: Cost-CAUSE saves significant annotation cost compared to random sampling.

13.
Circulation ; 140(4): 270-279, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234639

RESUMO

BACKGROUND: Drug effects can be investigated through natural variation in the genes for their protein targets. The present study aimed to use this approach to explore the potential side effects and repurposing potential of antihypertensive drugs, which are among the most commonly used medications worldwide. METHODS: Genetic proxies for the effect of antihypertensive drug classes were identified as variants in the genes for the corresponding targets that associated with systolic blood pressure at genome-wide significance. Mendelian randomization estimates for drug effects on coronary heart disease and stroke risk were compared with randomized, controlled trial results. A phenome-wide association study in the UK Biobank was performed to identify potential side effects and repurposing opportunities, with findings investigated in the Vanderbilt University biobank (BioVU) and in observational analysis of the UK Biobank. RESULTS: Suitable genetic proxies for angiotensin-converting enzyme inhibitors, ß-blockers, and calcium channel blockers (CCBs) were identified. Mendelian randomization estimates for their effect on coronary heart disease and stroke risk, respectively, were comparable to results from randomized, controlled trials against placebo. A phenome-wide association study in the UK Biobank identified an association of the CCB standardized genetic risk score with increased risk of diverticulosis (odds ratio, 1.02 per standard deviation increase; 95% CI, 1.01-1.04), with a consistent estimate found in BioVU (odds ratio, 1.01; 95% CI, 1.00-1.02). Cox regression analysis of drug use in the UK Biobank suggested that this association was specific to nondihydropyridine CCBs (hazard ratio 1.49 considering thiazide diuretic agents as a comparator; 95% CI, 1.04-2.14) but not dihydropyridine CCBs (hazard ratio, 1.04; 95% CI, 0.83-1.32). CONCLUSIONS: Genetic variants can be used to explore the efficacy and side effects of antihypertensive medications. The identified potential effect of nondihydropyridine CCBs on diverticulosis risk could have clinical implications and warrants further investigation.

14.
JCO Clin Cancer Inform ; 3: 1-9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141421

RESUMO

PURPOSE: Drug development is becoming increasingly expensive and time consuming. Drug repurposing is one potential solution to accelerate drug discovery. However, limited research exists on the use of electronic health record (EHR) data for drug repurposing, and most published studies have been conducted in a hypothesis-driven manner that requires a predefined hypothesis about drugs and new indications. Whether EHRs can be used to detect drug repurposing signals is not clear. We want to demonstrate the feasibility of mining large, longitudinal EHRs for drug repurposing by detecting candidate noncancer drugs that can potentially be used for the treatment of cancer. PATIENTS AND METHODS: By linking cancer registry data to EHRs, we identified 43,310 patients with cancer treated at Vanderbilt University Medical Center (VUMC) and 98,366 treated at the Mayo Clinic. We assessed the effect of 146 noncancer drugs on cancer survival using VUMC EHR data and sought to replicate significant associations (false discovery rate < .1) using the identical approach with Mayo Clinic EHR data. To evaluate replicated signals further, we reviewed the biomedical literature and clinical trials on cancers for corroborating evidence. RESULTS: We identified 22 drugs from six drug classes (statins, proton pump inhibitors, angiotensin-converting enzyme inhibitors, ß-blockers, nonsteroidal anti-inflammatory drugs, and α-1 blockers) associated with improved overall cancer survival (false discovery rate < .1) from VUMC; nine of the 22 drug associations were replicated at the Mayo Clinic. Literature and cancer clinical trial evaluations also showed very strong evidence to support the repurposing signals from EHRs. CONCLUSION: Mining of EHRs for drug exposure-mediated survival signals is feasible and identifies potential candidates for antineoplastic repurposing. This study sets up a new model of mining EHRs for drug repurposing signals.

15.
Epidemiology ; 30(4): 597-608, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31045611

RESUMO

BACKGROUND: The All of Us Research Program is building a national longitudinal cohort and collecting data from multiple information sources (e.g., biospecimens, electronic health records, and mobile/wearable technologies) to advance precision medicine. Participant-provided information, collected via surveys, will complement and augment these information sources. We report the process used to develop and refine the initial three surveys for this program. METHODS: The All of Us survey development process included: (1) prioritization of domains for scientific needs, (2) examination of existing validated instruments, (3) content creation, (4) evaluation and refinement via cognitive interviews and online testing, (5) content review by key stakeholders, and (6) launch in the All of Us electronic participant portal. All content was translated into Spanish. RESULTS: We conducted cognitive interviews in English and Spanish with 169 participants, and 573 individuals completed online testing. Feedback led to over 40 item content changes. Lessons learned included: (1) validated survey instruments performed well in diverse populations reflective of All of Us; (2) parallel evaluation of multiple languages can ensure optimal survey deployment; (3) recruitment challenges in diverse populations required multiple strategies; and (4) key stakeholders improved integration of surveys into larger Program context. CONCLUSIONS: This efficient, iterative process led to successful testing, refinement, and launch of three All of Us surveys. Reuse of All of Us surveys, available at http://researchallofus.org, may facilitate large consortia targeting diverse populations in English and Spanish to capture participant-provided information to supplement other data, such as genetic, physical measurements, or data from electronic health records.

17.
Am J Hum Genet ; 104(3): 503-519, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827500

RESUMO

Although the use of model systems for studying the mechanism of mutations that have a large effect is common, we highlight here the ways that zebrafish-model-system studies of a gene, GRIK5, that contributes to the polygenic liability to develop eye diseases have helped to illuminate a mechanism that implicates vascular biology in eye disease. A gene-expression prediction derived from a reference transcriptome panel applied to BioVU, a large electronic health record (EHR)-linked biobank at Vanderbilt University Medical Center, implicated reduced GRIK5 expression in diverse eye diseases. We tested the function of GRIK5 by depletion of its ortholog in zebrafish, and we observed reduced blood vessel numbers and integrity in the eye and increased vascular permeability. Analyses of EHRs in >2.6 million Vanderbilt subjects revealed significant comorbidity of eye and vascular diseases (relative risks 2-15); this comorbidity was confirmed in 150 million individuals from a large insurance claims dataset. Subsequent studies in >60,000 genotyped BioVU participants confirmed the association of reduced genetically predicted expression of GRIK5 with comorbid vascular and eye diseases. Our studies pioneer an approach that allows a rapid iteration of the discovery of gene-phenotype relationships to the primary genetic mechanism contributing to the pathophysiology of human disease. Our findings also add dimension to the understanding of the biology driven by glutamate receptors such as GRIK5 (also referred to as GLUK5 in protein form) and to mechanisms contributing to human eye diseases.

18.
Clin Pharmacol Ther ; 106(3): 623-631, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30924126

RESUMO

Allopurinol, which lowers uric acid (UA) concentration, is increasingly being recognized for its benefits in cardiovascular and renal disease. However, response to allopurinol is variable. We gathered samples from 4,446 multiethnic subjects for a genome-wide association study of allopurinol response. Consistent with previous studies, we observed that the Q141K variant in ABCG2 (rs2231142), which encodes the efflux pump breast cancer resistance protein (BCRP), associated with worse response to allopurinol. However, for the first time this association reached genome-wide level significance (P = 8.06 × 10-11 ). Additionally, we identified a novel association with a variant in GREM2 (rs1934341, P = 3.22 × 10-6 ). In vitro studies identified oxypurinol, the active metabolite of allopurinol, as an inhibitor of the UA transporter GLUT9, suggesting that oxypurinol may modulate UA reabsorption. These results provide strong evidence for a role of BCRP Q141K in allopurinol response, and suggest that allopurinol may have additional hypouricemic effects beyond xanthine oxidase inhibition.

19.
Pac Symp Biocomput ; 24: 272-283, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864329

RESUMO

The link between cardiovascular diseases and neurological disorders has been widely observed in the aging population. Disease prevention and treatment rely on understanding the potential genetic nexus of multiple diseases in these categories. In this study, we were interested in detecting pleiotropy, or the phenomenon in which a genetic variant influences more than one phenotype. Marker-phenotype association approaches can be grouped into univariate, bivariate, and multivariate categories based on the number of phenotypes considered at one time. Here we applied one statistical method per category followed by an eQTL colocalization analysis to identify potential pleiotropic variants that contribute to the link between cardiovascular and neurological diseases. We performed our analyses on ~530,000 common SNPs coupled with 65 electronic health record (EHR)-based phenotypes in 43,870 unrelated European adults from the Electronic Medical Records and Genomics (eMERGE) network. There were 31 variants identified by all three methods that showed significant associations across late onset cardiac- and neurologic- diseases. We further investigated functional implications of gene expression on the detected "lead SNPs" via colocalization analysis, providing a deeper understanding of the discovered associations. In summary, we present the framework and landscape for detecting potential pleiotropy using univariate, bivariate, multivariate, and colocalization methods. Further exploration of these potentially pleiotropic genetic variants will work toward understanding disease causing mechanisms across cardiovascular and neurological diseases and may assist in considering disease prevention as well as drug repositioning in future research.

20.
PLoS One ; 14(2): e0212112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30759150

RESUMO

Genome-wide and phenome-wide association studies are commonly used to identify important relationships between genetic variants and phenotypes. Most studies have treated diseases as independent variables and suffered from the burden of multiple adjustment due to the large number of genetic variants and disease phenotypes. In this study, we used topic modeling via non-negative matrix factorization (NMF) for identifying associations between disease phenotypes and genetic variants. Topic modeling is an unsupervised machine learning approach that can be used to learn patterns from electronic health record data. We chose the single nucleotide polymorphism (SNP) rs10455872 in LPA as the predictor since it has been shown to be associated with increased risk of hyperlipidemia and cardiovascular diseases (CVD). Using data of 12,759 individuals with electronic health records (EHR) and linked DNA samples at Vanderbilt University Medical Center, we trained a topic model using NMF from 1,853 distinct phenotypes and identified six topics. We tested their associations with rs10455872 in LPA. Topics enriched for CVD and hyperlipidemia had positive correlations with rs10455872 (P < 0.001), replicating a previous finding. We also identified a negative correlation between LPA and a topic enriched for lung cancer (P < 0.001) which was not previously identified via phenome-wide scanning. We were able to replicate the top finding in a separate dataset. Our results demonstrate the applicability of topic modeling in exploring the relationship between genetic variants and clinical diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA