Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 304: 125415, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31479995

RESUMO

The aim of our study was to characterize the proteolytic activity of 170 Lactobacillus strains isolated from traditional Mongolian dairy products (yogurt and fermented milk), and to investigate their capacity to generate bioactive peptides during milk fermentation. All isolates were screened for proteolytic activity using skim milk agar-well diffusion test. Fifteen strains (9 Lactobacillus helveticus and 6 Lactobacillus delbrueckii subsp. bulgaricus) were then selected and further evaluated using an original strategy based on multiparametric analysis, taking into account growth rate, acidification capacity, proteolytic activity, cell envelope associated peptidase (CEP) profile and LC-MS/MS analysis of peptides. All parameters were analyzed using principal component analysis (PCA). Results showed that strain growth and acidification correlate with peptide production and that Mongolian L. helveticus strains differ from Western strains in terms of CEP distribution. The PCA revealed that CEP profiles are major determinants of ß-casein hydrolysis patterns. Strains with distinctive proteolytic activities were identified.

2.
J Proteomics ; 186: 83-97, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30016717

RESUMO

The O-linked-N-acetyl-d-glucosaminylation (O-GlcNAcylation) modulates numerous aspects of cellular processes. Akin to phosphorylation, O-GlcNAcylation is highly dynamic, reversible, and responds rapidly to extracellular demand. Despite the absolute necessity to determine post-translational sites to fully understand the role of O-GlcNAcylation, it remains a high challenge for the major reason that unmodified proteins are in excess comparing to the O-GlcNAcylated ones. Based on a click chemistry approach, O-GlcNAcylated proteins were labelled with azido-GalNAc and coupled to agarose beads. The proteome extracted from C2C12 myotubes was submitted to an intensive fractionation prior to azide-alkyne click chemistry. This combination of fractionation and click chemistry is a powerful methodology to map O-GlcNAc sites; indeed, 342 proteins were identified through the identification of 620 peptides containing one or more O-GlcNAc sites. We localized O-GlcNAc sites on proteins involved in signalling pathways or in protein modification, as well as structural proteins. Considering the recent role of O-GlcNAcylation in the modulation of sarcomere morphometry and interaction between key structural protein, we focused on proteins involved in the cytoarchitecture of skeletal muscle cells. In particular, several O-GlcNAc sites were located into protein-protein interaction domains, suggesting that O-GlcNAcylation could be strongly involved in the organization and reorganization of sarcomere and myofibrils. SIGNIFICANCE: O-GlcNAcylation is an atypical glycosylation involved in the regulation of almost all if not all cellular processes, but its precise role remains sometimes obscure because of the ignorance of the O-GlcNAc site localization; thus, it remains indispensable to precisely map the O-GlcNAcylated sites to fully understand the role of O-GlcNAcylation on a given protein. For this purpose, we combined extensive fractionation of skeletal muscle cells proteome with click chemistry to map O-GlcNAc sites without an a priori consideration. A total of 620 peptides containing one or more O-GlcNAc sites were identified; interestingly, several of them belong to low expressed proteins, in particular proteins involved in signalling pathways. We also focused on structural proteins in view of recent data supporting the role of O-GlcNAcylation in the modulation of sarcomere cytoarchitecture; importantly, some of the O-GlcNAc sites were mapped into protein-protein interaction domains, reinforcing the involvement of O-GlcNAcylation in the organization and reorganization of sarcomere, and in larger extent, of myofibrils.

3.
Biochim Biophys Acta ; 1860(9): 2017-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27301331

RESUMO

BACKGROUND: The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. METHODS: C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. RESULTS: Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. CONCLUSIONS: For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. GENERAL SIGNIFICANCE: In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation.


Assuntos
Acilação/fisiologia , Músculo Esquelético/metabolismo , Mapas de Interação de Proteínas/fisiologia , Sarcômeros/metabolismo , Actinina/metabolismo , Acilação/efeitos dos fármacos , Animais , Linhagem Celular , Cristalinas/metabolismo , Desmina/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Piranos/farmacologia , Tiazóis/farmacologia
4.
J Endocrinol ; 230(1): 39-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27122310

RESUMO

According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11ß-hydroxysteroid dehydrogenase type 1 (11ß-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner.


Assuntos
Tecido Adiposo/metabolismo , Lactação/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Obesidade/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ganho de Peso/fisiologia , Animais , Peso Corporal , Corticosterona/sangue , Feminino , Intolerância à Glucose/metabolismo , Hiperinsulinismo/metabolismo , Masculino , PPAR gama/genética , PPAR gama/metabolismo , Gravidez , Ratos , Fatores Sexuais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
Subcell Biochem ; 76: 125-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219710

RESUMO

The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma.


Assuntos
Fosfatase Alcalina/fisiologia , Vasos Sanguíneos/enzimologia , Encéfalo/irrigação sanguínea , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Permeabilidade Capilar/genética , Circulação Cerebrovascular/genética , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-25389416

RESUMO

The cellular diversity of proteins results in part from their post-translational modifications. Among all of them, the O-GlcNAcylation is an atypical glycosylation, more similar to phosphorylation than classical glycosylations. Highly dynamic, reversible, and exclusively localized on cytosolic, nuclear, and mitochondrial proteins, O-GlcNAcylation is known to regulate almost all if not all cellular processes. Fundamental for the cell life, O-GlcNAcylation abnormalities are involved in the etiology of several inherited diseases. Assessing to O-GlcNAcylation pattern will permit to get relevant data about the role of O-GlcNAcylation in cell physiology. To get understanding about the role of O-GlcNAcylation, as also considering its interplay with phosphorylation, the O-GlcNAc profiling remains a real challenge for the community of proteomists/glycoproteomists. The development of multiplexed proteomics based on fluorescent detection of proteins permits to go further in the understanding of the proteome complexity. We propose herein a multiplexed proteomic strategy to detect O-GlcNAcylated proteins, phosphoproteins, and the whole proteome within the same bidimensional gel. In particular, we investigated the phosphoproteome through the ProQ Diamond staining, while the whole proteome was visualized through Sypro Ruby staining, or after the labeling of proteins with a T-Dye fluorophore. The O-GlcNAcome was revealed by the way of the Click chemistry and the azide-alkyne cycloaddition of a fluorophore on GlcNAc moieties. This method permits, after sequential image acquisition, the direct in-gel detection of O-GlcNAcome, phosphoproteome, and whole proteome.

7.
Proteomics ; 13(7): 1185-99, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23436736

RESUMO

In the neurovascular unit, brain microvascular endothelial cells develop characteristic barrier features that control the molecular exchanges between the blood and the brain. These characteristics are partially or totally lost when the cells are isolated for use in in vitro blood-brain barrier (BBB) models. Hence, the re-induction of barrier properties is crucial for the relevance of BBB models. Although the role of astrocyte promiscuity is well established, the molecular mechanisms of re-induction remain largely unknown. Here, we used a DIGE-based proteomics approach to study endothelial cellular proteins showing significant quantitative variations after BBB re-induction. We confirm that quantitative changes mainly concern proteins involved in cell structure and motility. Furthermore, we describe the possible involvement of the asymmetric dimethylarginine pathway in the BBB phenotype re-induction process and we discuss asymmetric dimethylarginine's potential role in regulating endothelial function (in addition to its role as a by-product of protein modification). Our results also suggest that the intracellular redox potential is lower in the in vitro brain capillary endothelial cells displaying re-induced BBB functions than in cells with limited BBB functions.


Assuntos
Barreira Hematoencefálica/metabolismo , Eletroforese em Gel Bidimensional/métodos , Células Endoteliais/metabolismo , Neuroglia/metabolismo , Animais , Arginina/análogos & derivados , Barreira Hematoencefálica/citologia , Bovinos , Meios de Cultura , Immunoblotting , Fenótipo , Ratos , Reprodutibilidade dos Testes
8.
Proteomes ; 1(3): 180-218, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28250403

RESUMO

Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other.

9.
PLoS One ; 7(10): e48428, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119012

RESUMO

Although the physiological properties of the blood-brain barrier (BBB) are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs) has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP) and Eps15 homology domain-containing protein 1(EDH1) are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.


Assuntos
Fosfatase Alcalina/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Proteínas de Transporte Vesicular/genética , Fosfatase Alcalina/metabolismo , Animais , Barreira Hematoencefálica/química , Bovinos , Células Cultivadas , Células Endoteliais/química , Ativação Enzimática/efeitos dos fármacos , Levamisol/farmacologia , Neuroglia/metabolismo , Proteômica , Ratos , Proteínas de Transporte Vesicular/metabolismo
10.
J Proteomics ; 75(2): 628-41, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21982828

RESUMO

When in the vicinity of astrocytes, brain capillary endothelial cells (BCECs) develop the characteristic structural and functional features of the blood-brain barrier (BBB). The latter has low cellular permeability and restricts various compounds from entering the brain. We recently reported that the cytoskeleton-related proteins actin, gelsolin and filamin-A undergo the largest quantitative changes in bovine BCECs after re-induction of BBB functions by co-culture with glial cells. In the present study, we used an in-depth, proteomic approach to quantitatively compare differences in Triton-X-100-solubilized proteins from bovine BCECs with limited or re-induced BBB functions (i.e. cultured in the absence or presence of glial cells, respectively). The 81 protein spots of differing abundance were linked to 55 distinct genes. According to the Protein ANalysis THrough Evolutionary Relationships classification system and an Ingenuity Pathway Analysis, these quantitative changes mainly affected proteins involved in (i) cell structure and motility and (ii) protein metabolism and modification. The fold-changes affecting HSPB1, moesin and ANXA5 protein levels were confirmed by western blot analysis but were not accompanied by changes in the corresponding mRNA expression levels. Our results reveal that the bovine BCECs' phenotype adaptation to variations in their environment involves the reorganization of the actin cytoskeleton.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/irrigação sanguínea , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Actinas/genética , Animais , Anexinas/genética , Barreira Hematoencefálica/citologia , Bovinos , Técnicas de Cocultura , Eletroforese em Gel Bidimensional , Células Endoteliais/fisiologia , Proteínas de Choque Térmico HSP27/genética , Proteínas dos Microfilamentos , Neuroglia/citologia , Mapas de Interação de Proteínas , Proteômica/métodos , RNA Mensageiro/metabolismo , Ratos , Vimentina/genética
11.
Proteome Sci ; 8: 57, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078152

RESUMO

BACKGROUND: Brain capillary endothelial cells (BCECs) form the physiological basis of the blood-brain barrier (BBB). The barrier function is (at least in part) due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein). Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. RESULTS: A total of 215 protein spots (corresponding to 130 distinct proteins) were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin) and constitutes valuable evidence for predictions based on genome annotation. CONCLUSIONS: Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA