Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37220255

RESUMO

Antiferromagnets are promising materials for future opto-spintronic applications since they show spin dynamics in the THz range and no net magnetization. Recently, layered van der Waals (vdW) antiferromagnets have been reported, which combine low-dimensional excitonic properties with complex spin-structure. While various methods for the fabrication of vdW 2D crystals exist, formation of large area and continuous thin films is challenging because of either limited scalability, synthetic complexity, or low opto-spintronic quality of the final material. Here, we fabricate centimeter-scale thin films of the van der Waals 2D antiferromagnetic material NiPS3, which we prepare using a crystal ink made from liquid phase exfoliation (LPE). We perform statistical atomic force microscopy (AFM) and scanning electron microscopy (SEM) to characterize and control the lateral size and number of layers through this ink-based fabrication. Using ultrafast optical spectroscopy at cryogenic temperatures, we resolve the dynamics of photoexcited excitons. We find antiferromagnetic spin arrangement and spin-entangled Zhang-Rice multiplet excitons with lifetimes in the nanosecond range, as well as ultranarrow emission line widths, despite the disordered nature of our films. Thus, our findings demonstrate scalable thin-film fabrication of high-quality NiPS3, which is crucial for translating this 2D antiferromagnetic material into spintronic and nanoscale memory devices and further exploring its complex spin-light coupled states.

2.
Nat Commun ; 14(1): 2452, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117174

RESUMO

Detecting low dose rates of X-rays is critical for making safer radiology instruments, but is limited by the absorber materials available. Here, we develop bismuth oxyiodide (BiOI) single crystals into effective X-ray detectors. BiOI features complex lattice dynamics, owing to the ionic character of the lattice and weak van der Waals interactions between layers. Through use of ultrafast spectroscopy, first-principles computations and detailed optical and structural characterisation, we show that photoexcited charge-carriers in BiOI couple to intralayer breathing phonon modes, forming large polarons, thus enabling longer drift lengths for the photoexcited carriers than would be expected if self-trapping occurred. This, combined with the low and stable dark currents and high linear X-ray attenuation coefficients, leads to strong detector performance. High sensitivities reaching 1.1 × 103 µC Gyair-1 cm-2 are achieved, and the lowest dose rate directly measured by the detectors was 22 nGyair s-1. The photophysical principles discussed herein offer new design avenues for novel materials with heavy elements and low-dimensional electronic structures for (opto)electronic applications.

3.
Energy Environ Sci ; 15(10): 4323-4337, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36325485

RESUMO

Doping halide perovskites (HPs) with extrinsic species, such as alkali metal ions, plays a critical, albeit often elusive role in optimising optoelectronic devices. Here, we use solid state lithium ion battery inspired devices with a polyethylene oxide-based polymer electrolyte to dope HPs controllably with lithium ions. We perform a suite of operando material analysis techniques while dynamically varying Li doping concentrations. We determine and quantify three doping regimes; a safe regime, with doping concentrations of <1020 cm-3 (2% Li : Pb mol%) in which the HP may be modified without detrimental effect to its structure; a minor decomposition regime, in which the HP is partially transformed but remains the dominant species; and a major decomposition regime in which the perovskite is superseded by new phases. We provide a mechanistic description of the processes mediating between each stage and find evidence for metallic Pb(0), LiBr and LiPbBr2 as final decomposition products. Combining results from synchrotron X-ray diffraction measurements with in situ photoluminescence and optical reflection microscopy studies, we distinguish the influences of free charge carriers and intercalated lithium independently. We find that the charge density is equally as important as the geometric considerations of the dopant species and thereby provide a quantitative framework upon which the future design of doped-perovskite energy devices should be based.

4.
J Am Chem Soc ; 144(31): 14079-14089, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895312

RESUMO

Hybrid organic-inorganic networks that incorporate chiral molecules have attracted great attention due to their potential in semiconductor lighting applications and optical communication. Here, we introduce a chiral organic molecule (R)/(S)-1-cyclohexylethylamine (CHEA) into bismuth-based lead-free structures with an edge-sharing octahedral motif, to synthesize chiral lead-free (R)/(S)-CHEA4Bi2BrxI10-x crystals and thin films. Using single-crystal X-ray diffraction measurements and density functional theory calculations, we identify crystal and electronic band structures. We investigate the materials' optical properties and find circular dichroism, which we tune by the bromide-iodide ratio over a wide wavelength range, from 300 to 500 nm. We further employ transient absorption spectroscopy and time-correlated single photon counting to investigate charge carrier dynamics, which show long-lived excitations with optically induced chirality memory up to tens of nanosecond timescales. Our demonstration of chirality memory in a color-tunable chiral lead-free semiconductor opens a new avenue for the discovery of high-performance, lead-free spintronic materials with chiroptical functionalities.

5.
Nat Commun ; 13(1): 3320, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680886

RESUMO

One of the open challenges of spintronics is to control the spin relaxation mechanisms. Layered metal-halide perovskites are an emerging class of semiconductors which possess a soft crystal lattice that strongly couples electronic and vibrational states and show promise for spintronic applications. Here, we investigate the impact of such strong coupling on the spin relaxation of excitons in the layered perovskite BA2FAPbI7 using a combination of cryogenic Faraday rotation and transient absorption spectroscopy. We report an unexpected increase of the spin lifetime by two orders of magnitude at 77 K under photoexcitation with photon energy in excess of the exciton absorption peak, and thus demonstrate optical control over the dominant spin relaxation mechanism. We attribute this control to strong coupling between excitons and optically excited phonons, which form polaronic states with reduced electron-hole wave function overlap that protect the exciton spin memory. Our insights highlight the special role of exciton-lattice interactions on the spin physics in the layered perovskites and provide a novel opportunity for optical spin control.

6.
ACS Energy Lett ; 6(6): 2248-2255, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34778561

RESUMO

Frequency resolved methods are widely used to determine device properties of perovskite solar cells. However, obtaining the electronic parameters for diffusion and recombination by impedance spectroscopy has been so far elusive, since the measured spectra do not present the diffusion of electrons. Here we show that intensity modulated photocurrent spectroscopy (IMPS) displays a high frequency spiraling feature determined by the diffusion-recombination constants, under conditions of generation of carriers far from the collecting contact. We present models and experiments in two different configurations: the standard sandwich-contacts solar cell device and the quasi-interdigitated back-contact (QIBC) device for lateral long-range diffusion. The results of the measurements produce the hole diffusion coefficient of D p = 0.029 cm2/s and lifetime of τ p = 16 µs for one cell and D p = 0.76 cm2/s and τ p = 1.6 µs for the other. The analysis in the frequency domain is effective to separate the carrier diffusion (at high frequency) from the ionic contact phenomena at a low frequency. This result opens the way for a systematic determination of transport and recombination features in a variety of operando conditions.

7.
J Phys Chem Lett ; 12(42): 10450-10456, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34672580

RESUMO

The nature of photoexcitations in Ruddlesden-Popper (RP) hybrid metal halide perovskites is still under debate. While the high exciton binding energy in the hundreds of millielectronvolts indicates excitons as the primary photoexcitations, recent reports found evidence for dark, Coulombically screened populations, which form via strong coupling of excitons and the atomic lattice. Here, we use time-resolved mid-infrared spectroscopy to gain insights into the nature and recombination of such dark excited states in (BA)2(MA)n-1PbnI3n+1 (n = 1,2,3) via their intraband electronic absorption. In stark contrast to results in the bulk perovskites, all samples exhibit a broad, unstructured mid-IR photoinduced absorbance with no infrared activated modes, independent of excitonic confinement. Further, the recombination dynamics are dominated by a bimolecular process. In combination with steady-state photoluminescence experiments, we conclude that screened, dark photoexcitations act as a population reservoir in the RP hybrid perovskites, from which nongeminate formation of bright excitons precedes generation of photoluminescence.

8.
J Phys Chem C Nanomater Interfaces ; 125(27): 15025-15034, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34295448

RESUMO

Band gap tuning of hybrid metal-halide perovskites by halide substitution holds promise for tailored light absorption in tandem solar cells and emission in light-emitting diodes. However, the impact of halide substitution on the crystal structure and the fundamental mechanism of photo-induced halide segregation remain open questions. Here, using a combination of temperature-dependent X-ray diffraction and calorimetry measurements, we report the emergence of a disorder- and frustration-driven orientational glass for a wide range of compositions in CH3NH3Pb(Cl x Br1-x )3. Using temperature-dependent photoluminescence measurements, we find a correlation between halide segregation under illumination and local strains from the orientational glass. We observe no glassy behavior in CsPb(Cl x Br1-x )3, highlighting the importance of the A-site cation for the structure and optoelectronic properties. Using first-principles calculations, we identify the local preferential alignment of the organic cations as the glass formation mechanism. Our findings rationalize the superior photostability of mixed-cation metal-halide perovskites and provide guidelines for further stabilization strategies.

9.
Nat Commun ; 12(1): 3489, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108469

RESUMO

Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magnetization with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.

10.
J Am Chem Soc ; 143(23): 8647-8653, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993693

RESUMO

Nanocrystals based on halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased charge carrier localization through lattice periodicity breaking from Mn dopants, which increases the overlap of electron and hole wave functions locally and thus the oscillator strength of excitons in their vicinity. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.

11.
J Phys Chem Lett ; 12(18): 4428-4433, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33950674

RESUMO

Hybrid metal halide perovskites exhibit well-defined semiconducting properties and efficient optoelectronic performance considering their soft crystal structure and low-energy lattice motions. The response of such a crystal lattice to light-induced charges is a fundamental question, for which experimental insight into ultrafast time scales is still sought. Here, we use infrared-activated vibrations (IRAV) of the organic components within the hybrid perovskite lattice as a sensitive probe for local structural reorganizations after photoexcitation, with femtosecond resolution. We find that the IRAV signal response shows a delayed rise of about 3 ps and subsequent decay of pronounced monomolecular character, distinguishing it from absorption associated with free carriers. We interpret our results as a two-step carrier localization process. Initially, carriers localize transiently in local energy minima formed by lattice fluctuations. A subpopulation of these can then fall into deeper trapped states over picoseconds, likely due to local reorganization of the organic molecules surrounding the carriers.

12.
Nat Mater ; 20(5): 618-623, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398119

RESUMO

Excitation localization involving dynamic nanoscale distortions is a central aspect of photocatalysis1, quantum materials2 and molecular optoelectronics3. Experimental characterization of such distortions requires techniques sensitive to the formation of point-defect-like local structural rearrangements in real time. Here, we visualize excitation-induced strain fields in a prototypical member of the lead halide perovskites4 via femtosecond resolution diffuse X-ray scattering measurements. This enables momentum-resolved phonon spectroscopy of the locally distorted structure and reveals radially expanding nanometre-scale strain fields associated with the formation and relaxation of polarons in photoexcited perovskites. Quantitative estimates of the magnitude and shape of this polaronic distortion are obtained, providing direct insights into the dynamic structural distortions that occur in these materials5-9. Optical pump-probe reflection spectroscopy corroborates these results and shows how these large polaronic distortions transiently modify the carrier effective mass, providing a unified picture of the coupled structural and electronic dynamics that underlie the optoelectronic functionality of the hybrid perovskites.

13.
Nano Lett ; 20(8): 5967-5974, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32589038

RESUMO

Off-grid energy storage devices are becoming increasingly important to power distributed applications, such as the Internet of things, and smart city ubiquitous sensor systems. To date, this has been achieved by combining an energy storage device, e.g., a battery or capacitor with an energy harvester, e.g., a solar cell. However, this approach inherently increases the device footprint and the output voltages of energy harvesters often do not match those required by energy storage device. Here we propose the first photo-rechargeable zinc-ion capacitors, where graphitic carbon nitride acts simultaneously as the capacitor electrode and light harvesting material. This approach allows light to be used to recharge the capacitor directly and they can be operated in a continuous light powered mode. These capacitors show a photo-rechargeable specific capacitance of ∼11377 mF g-1, a photo-charging voltage response of ∼850 mV, and a cyclability with ∼90% capacitance retention over 1000 cycles.

14.
Nano Lett ; 20(8): 5678-5685, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32574069

RESUMO

Using circularly polarized broadband transient absorption, time-resolved circular photoluminescence, and transient Faraday rotation spectroscopy, we report that spin-dependent interactions have a significant impact on exciton energies and spin depolarization times in layered Ruddlesden-Popper hybrid metal-halide perovskites. In BA2FAPb2I7, we report that room-temperature spin lifetimes are largest (3.2 ps) at a carrier density of ∼1017 cm-3 with increasing depolarization rates at higher exciton densities. This indicates that many-body interactions reduce spin-lifetimes and outcompete the effect of D'yakonov-Perel precessional relaxation that has been previously reported at lower carrier densities. We further observe a dynamic circular dichroism that arises from a photoinduced polarization in the exciton distribution between total angular momentum states. Our findings provide fundamental and application relevant insights into the spin-dependent exciton-exciton interactions in layered hybrid perovskites.

15.
J Am Chem Soc ; 142(11): 5060-5067, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32101409

RESUMO

Layered hybrid metal-halide perovskites with non-centrosymmetric crystal structure are predicted to show spin-selective band splitting from Rashba effects. Thus, fabrication of metal-halide perovskites with defined crystal symmetry is desired to control the spin-splitting in their electronic states. Here, we report the influence of halogen para-substituents on the crystal structure of benzylammonium lead iodide perovskites (4-XC6H4CH2NH3)2PbI4 (X = H, F, Cl, Br). Using X-ray diffraction and second-harmonic generation, we study structure and symmetry of single-crystal and thin-film samples. We report that introduction of a halogen atom lowers the crystal symmetry such that the chlorine- and bromine-substituted structures are non-centrosymmetric. The differences can be attributed to the nature of the intermolecular interactions between the organic molecules. We calculate electronic band structures and find good control of Rashba splittings. Our results present a facile approach to tailor hybrid layered metal halide perovskites with potential for spintronic and nonlinear optical applications.

16.
Nat Commun ; 11(1): 611, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001711

RESUMO

Perovskite light-emitting diodes have recently broken the 20% barrier for external quantum efficiency. These values cannot be explained with classical models for optical outcoupling. Here, we analyse the role of photon recycling (PR) in assisting light extraction from perovskite light-emitting diodes. Spatially-resolved photoluminescence and electroluminescence measurements combined with optical modelling show that repetitive re-absorption and re-emission of photons trapped in substrate and waveguide modes significantly enhance light extraction when the radiation efficiency is sufficiently high. In this manner, PR can contribute more than 70% to the overall emission, in agreement with recently-reported high efficiencies. While an outcoupling efficiency of 100% is theoretically possible with PR, parasitic absorption losses due to absorption from the electrodes are shown to limit practical efficiencies in current device architectures. To overcome the present limits, we propose a future configuration with a reduced injection electrode area to drive the efficiency toward 100%.

17.
J Am Chem Soc ; 142(2): 777-782, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851510

RESUMO

Metal-halide perovskites show excellent properties for photovoltaic and optoelectronic applications, with power conversion efficiencies of solar cell and LEDs exceeding 20%. Being solution processed, these polycrystalline materials likely contain a large density of defects compared to melt-grown semiconductors. Surprisingly, typical effects from defects (absorption below the bandgap, low fill factor and open circuit voltage in devices, strong nonradiative recombination) are not observed. In this work, we study thin films of metal-halide perovskites CH3NH3PbX3 (X = Br, I) with ultrafast multidimensional optical spectroscopy to resolve the dynamics of band and defect states. We observe a shared ground state between the band-edge transitions and a continuum of sub-bandgap states, which extends at least 350 meV below the band edge). We explain the comparatively large bleaching of the dark sub-bandgap states with oscillator strength borrowing from the band-edge transition. Our results show that upon valence to conduction band excitation, such subgap states are instantaneously bleached for large parts of the carrier lifetime and conversely that most dark sub-bandgap states can be populated by light excitation. This observation helps to unravel the photophysical origin of the unexpected optoelectronic properties of these materials.

18.
Chem Sci ; 10(3): 793-801, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30774873

RESUMO

We report the first examples of thiocyanate-based analogues of the cyanide Prussian blue compounds, MIII[Bi(SCN)6], M = Fe, Cr, Sc. These compounds adopt the primitive cubic pcu topology and show strict cation order. Optical absorption measurements show these compounds have band gaps within the visible and near IR region, suggesting that they may be useful for applications where light harvesting is key, such as photocatalysis. We also show that Cr[Bi(SCN)6] can reversibly uptake water into its framework structure pointing towards the possibility of using these frameworks for host/guest chemistry.

19.
Nat Commun ; 10(1): 962, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796250

RESUMO

The original version of this Article contained an error in the spelling of the author Dan Credgington, which was incorrectly given as Dan Credington. This has now been corrected in both the PDF and HTML versions of the Article.

20.
Sci Rep ; 9(1): 74, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635589

RESUMO

Hybrid organic-inorganic heterointerfaces in solar cells suffer from inefficient charge separation yet the origin of performance limitations are widely unknown. In this work, we focus on the role of metal oxide-polymer interface energetics in a charge generation process. For this purpose, we present novel benzothiadiazole based thiophene oligomers that tailor the surface energetics of the inorganic acceptor TiO2 systematically. In a simple bilayer structure with the donor polymer poly(3-hexylthiophene) (P3HT), we are able to improve the charge generation process considerably. By means of an electronic characterization of solar cell devices in combination with ultrafast broadband transient absorption spectroscopy, we demonstrate that this remarkable improvement in performance originates from reduced recombination of localized charge transfer states. In this context, fundamental design rules for interlayers are revealed, which assist the charge separation at organic-inorganic interfaces. Beside acting as a physical spacer in between electrons and holes, interlayers should offer (1) a large energy offset to drive exciton dissociation, (2) a push-pull building block to reduce the Coulomb binding energy of charge transfer states and (3) an energy cascade to limit carrier back diffusion towards the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...