Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527857

RESUMO

Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of disorders caused by mutations which lead to impaired neuromuscular transmission. SLC25A1 encodes a mitochondrial citrate carrier, associated mainly with the severe neurometabolic disease combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA). We previously reported a single family with a homozygous missense variant in SLC25A1 with a phenotype restricted to relatively mild CMS with intellectual disability, but to date no additional cases of this CMS subtype had been reported. Here, we performed whole exome sequencing (WES) in three additional and unrelated families presenting with CMS and mild intellectual disability to identify the underlying causative gene. The WES analysis revealed the presence of a homozygous c.740G>A; p.(Arg247Gln) missense SLC25A1 variant, the same SLC25A1 variant as identified in the original family with this phenotype. Electron microscopy of muscle from two cases revealed enlarged and accumulated mitochondria. Haplotype analysis performed in two unrelated families suggested that this variant is a result of recurrent mutation and not a founder effect. This suggests that p.(Arg247Gln) is associated with a relatively mild CMS phenotype with subtle mitochondrial abnormalities, while other variants in this gene cause more severe neurometabolic disease. In conclusion, the p.(Arg247Gln) SLC25A1 variant should be considered in patients presenting with a presynaptic CMS phenotype, particularly with accompanying intellectual disability.

2.
Hum Mol Genet ; 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31363758

RESUMO

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins 1 or 2 with small vasohibin-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of vasohibin detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical MRI showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioral defects, including mild hyperactivity, lower anxiety and impaired social behavior. They do not, however, show prominent memory defects. Thus, SVBP deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.

3.
Neuromuscul Disord ; 29(6): 448-455, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130378

RESUMO

Recessive mutations in the MSTO1 gene, encoding for a mitochondrial distribution and morphology regulator, have been recently described in a very limited number of patients with multisystem involvement, mostly characterized by myopathy or dystrophy, cerebellar ataxia, pigmentary retinopathy and raised creatine kinase levels. Here we report an additional patient with recessive MSTO1-related muscular dystrophy (MSTO1-RD), and clinical and radiological evidence of progressive cerebellar involvement. Whole-exome sequencing identified two novel MSTO1 missense variants, c.766C > T (p. (Arg256Trp) and c.1435C > T (p. (Pro479Ser), predicted as damaging by in silico tools. We also report a distinct pattern of selective involvement on muscle MRI in MSTO1-RD. This case confirms a consistent MSTO1-related neuromuscular phenotype and in addition suggests a progressive neurological component at least in some patients, in keeping with the mitochondrial role of the defective protein.

4.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861108

RESUMO

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.

5.
Neuropediatrics ; 49(5): 330-338, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29940663

RESUMO

BACKGROUND: Primary microcephaly and profound global developmental delay have been considered the core clinical phenotype in patients with bi-allelic PRUNE1 mutations. METHODS: Linkage analysis and whole-exome sequencing (WES) in a multiplex family and extraction of further cases from a WES repository containing 571 children with severe developmental disabilities and neurologic symptoms. RESULTS: We identified bi-allelic PRUNE1 mutations in twelve children from six unrelated families. All patients who survived beyond the first 6 months of life had early-onset global developmental delay, bilateral spastic paresis, dysphagia and difficult-to-treat seizures, while congenital or later-evolving microcephaly was not a consistent finding. Brain MRI showed variable anomalies with progressive cerebral and cerebellar atrophies and T2-hyperintense brain stem lesions. Peripheral neuropathy was documented in five cases. Disease course was progressive in all patients and eight children died in the first or early second decade of life. In addition to the previously reported missense mutation p.(Asp106Asn), we observed a novel homozygous missense variant p.(Leu172Pro) and a homozygous contiguous gene deletion encompassing most of the PRUNE1 gene and part of the neighboring BNIPL gene. CONCLUSIONS: PRUNE1 deficiency causes severe early-onset disease affecting the central and peripheral nervous systems. Microcephaly is probably not a universal feature.

6.
Am J Hum Genet ; 102(3): 494-504, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478781

RESUMO

ATP synthase, H+ transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F1FO ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.

7.
Mol Genet Metab ; 123(1): 28-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331171

RESUMO

BACKGROUND: Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS: Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS: For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION: MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.

8.
JAMA Neurol ; 75(1): 105-113, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29181510

RESUMO

Importance: Neurologic disorders with isolated symptoms or complex syndromes are relatively frequent among mitochondrial inherited diseases. Recessive RTN4IP1 gene mutations have been shown to cause isolated and syndromic optic neuropathies. Objective: To define the spectrum of clinical phenotypes associated with mutations in RTN4IP1 encoding a mitochondrial quinone oxidoreductase. Design, Setting, and Participants: This study involved 12 individuals from 11 families with severe central nervous system diseases and optic atrophy. Targeted and whole-exome sequencing were performed-at Hospital Angers (France), Institute of Neurology Milan (Italy), Imagine Institute Paris (France), Helmoltz Zentrum of Munich (Germany), and Beijing Genomics Institute (China)-to clarify the molecular diagnosis of patients. Each patient's neurologic, ophthalmologic, magnetic resonance imaging, and biochemical features were investigated. This study was conducted from May 1, 2014, to June 30, 2016. Main Outcomes and Measures: Recessive mutations in RTN4IP1 were identified. Clinical presentations ranged from isolated optic atrophy to severe encephalopathies. Results: Of the 12 individuals in the study, 6 (50%) were male and 6 (50%) were female. They ranged in age from 5 months to 32 years. Of the 11 families, 6 (5 of whom were consanguineous) had a member or members who presented isolated optic atrophy with the already reported p.Arg103His or the novel p.Ile362Phe, p.Met43Ile, and p.Tyr51Cys amino acid changes. The 5 other families had a member or members who presented severe neurologic syndromes with a common core of symptoms, including optic atrophy, seizure, intellectual disability, growth retardation, and elevated lactate levels. Additional clinical features of those affected were deafness, abnormalities on magnetic resonance images of the brain, stridor, and abnormal electroencephalographic patterns, all of which eventually led to death before age 3 years. In these patients, novel and very rare homozygous and compound heterozygous mutations were identified that led to the absence of the protein and complex I disassembly as well as mild mitochondrial network fragmentation. Conclusions and Relevance: A broad clinical spectrum of neurologic features, ranging from isolated optic atrophy to severe early-onset encephalopathies, is associated with RTN4IP1 biallelic mutations and should prompt RTN4IP1 screening in both syndromic neurologic presentations and nonsyndromic recessive optic neuropathies.

9.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Sequenciamento Completo do Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
10.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Facies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
11.
Mol Genet Genomic Med ; 5(6): 774-780, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29178640

RESUMO

BACKGROUND: Johanson-Blizzard syndrome (JBS, MIM #243800) is a very rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, nasal wing hypoplasia, hypodontia, and other abnormalities. JBS is caused by mutations of the UBR1 gene (MIM *605981), encoding a ubiquitin ligase of the N-end rule pathway. METHODS: Molecular findings in a total of 65 unrelated patients with a clinical diagnosis of JBS who were previously screened for UBR1 mutations by Sanger sequencing were reviewed and cases lacking a disease-causing UBR1 mutation on either one or both alleles were included in this study. In order to discover mutations that are not detectable by Sanger sequencing, we designed a probe set for multiplex ligation-dependent probe amplification (MLPA) analysis of the UBR1 gene and analyzed the copy number status of all 47 UBR1 exons. RESULTS: Our previous studies using Sanger sequencing could detect mutations in 93.1% of 130 disease-associated UBR1 alleles. Six patients with a highly suggestive clinical diagnosis of JBS and unsolved genotype were included in this study. MLPA analysis detected six alleles harboring exon deletions/duplications, thereby raising the mutation detection rate in the entire cohort to 97.7% (127/130 alleles). CONCLUSION: We conclude that single or multi-exon deletions or duplications account for a substantial proportion of JBS-associated UBR1 mutations.


Assuntos
Anus Imperfurado/genética , Displasia Ectodérmica/genética , Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Hipotireoidismo/genética , Deficiência Intelectual/genética , Nariz/anormalidades , Pancreatopatias/genética , Ubiquitina-Proteína Ligases/genética , Adulto , Alelos , Anus Imperfurado/diagnóstico , Sequência de Bases , Criança , Pré-Escolar , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Análise Mutacional de DNA , Displasia Ectodérmica/diagnóstico , Éxons , Feminino , Deleção de Genes , Duplicação Gênica , Genótipo , Transtornos do Crescimento/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Hipotireoidismo/diagnóstico , Deficiência Intelectual/diagnóstico , Masculino , Reação em Cadeia da Polimerase Multiplex , Pancreatopatias/diagnóstico , Fenótipo
12.
Neurogenetics ; 18(4): 227-235, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29075935

RESUMO

Mitochondrial diseases are characterised by clinical, molecular and functional heterogeneity, reflecting their bi-genomic control. The nuclear gene GFM2 encodes mtEFG2, a protein with an essential role during the termination stage of mitochondrial translation. We present here two unrelated patients harbouring different and previously unreported compound heterozygous (c.569G>A, p.(Arg190Gln); c.636delA, p.(Glu213Argfs*3)) and homozygous (c.275A>C, p.(Tyr92Ser)) recessive variants in GFM2 identified by whole exome sequencing (WES) together with histochemical and biochemical findings to support the diagnoses of pathological GFM2 variants in each case. Both patients presented similarly in early childhood with global developmental delay, raised CSF lactate and abnormalities on cranial MRI. Sanger sequencing of familial samples confirmed the segregation of bi-allelic GFM2 variants with disease, while investigations into steady-state mitochondrial protein levels revealed respiratory chain subunit defects and loss of mtEFG2 protein in muscle. These data demonstrate the effects of defective mtEFG2 function, caused by previously unreported variants, confirming pathogenicity and expanding the clinical phenotypes associated with GFM2 variants.


Assuntos
Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fator G para Elongação de Peptídeos/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Linhagem , Fenótipo
13.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859103

RESUMO

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Assuntos
Regulação da Expressão Gênica/genética , Hipotálamo/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Fatores de Transcrição/genética , Adulto , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Criança , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
14.
PLoS Genet ; 13(3): e1006683, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28346496

RESUMO

Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Anormalidades Craniofaciais/genética , Predisposição Genética para Doença/genética , Deformidades Congênitas da Mão/genética , Neoplasias Hematológicas/genética , Deficiência Intelectual/genética , Mutação , Unhas Malformadas/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Western Blotting , Proteínas de Transporte/metabolismo , Linhagem Celular , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Criança , Pré-Escolar , Anormalidades Craniofaciais/metabolismo , Anormalidades Craniofaciais/patologia , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Células HEK293 , Deformidades Congênitas da Mão/metabolismo , Deformidades Congênitas da Mão/patologia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Unhas Malformadas/metabolismo , Unhas Malformadas/patologia , Proteínas Nucleares/metabolismo , Fenótipo
15.
Hum Mol Genet ; 26(3): 519-526, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28053047

RESUMO

Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Transtorno Autístico/patologia , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Relação Estrutura-Atividade
16.
Invest Ophthalmol Vis Sci ; 58(1): 594-603, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129423

RESUMO

Purpose: Peroxisomes perform complex metabolic and catabolic functions essential for normal growth and development. Mutations in 14 genes cause a spectrum of peroxisomal disease in humans. Most recently, PEX11B was associated with an atypical peroxisome biogenesis disorder (PBD) in a single individual. In this study, we identify further PEX11B cases and delineate associated phenotypes. Methods: Probands from three families underwent next generation sequencing (NGS) for diagnosis of a multisystem developmental disorder. Autozygosity mapping was conducted in one affected sibling pair. ExomeDepth was used to identify copy number variants from NGS data and confirmed by dosage analysis. Biochemical profiling was used to investigate the metabolic signature of the condition. Results: All patients presented with bilateral cataract at birth but the systemic phenotype was variable, including short stature, skeletal abnormalities, and dysmorphism-features not described in the original case. Next generation sequencing identified biallelic loss-of-function mutations in PEX11B as the underlying cause of disease in each case (PEX11B c.235C>T p.(Arg79Ter) homozygous; PEX11B c.136C>T p.(Arg46Ter) homozygous; PEX11B c.595C>T p.(Arg199Ter) heterozygous, PEX11B ex1-3 del heterozygous). Biochemical studies identified very low plasmalogens in one patient, whilst a mildly deranged very long chain fatty acid profile was found in another. Conclusions: Our findings expand the phenotypic spectrum of the condition and underscore congenital cataract as the consistent primary presenting feature. We also find that biochemical measurements of peroxisome function may be disturbed in some cases. Furthermore, diagnosis by NGS is proficient and may circumvent the requirement for an invasive skin biopsy for disease identification from fibroblast cells.


Assuntos
Catarata/genética , DNA/genética , Proteínas de Membrana/genética , Mutação , Transtornos Peroxissômicos/genética , Adolescente , Adulto , Catarata/congênito , Catarata/metabolismo , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Seguimentos , Heterozigoto , Humanos , Masculino , Proteínas de Membrana/metabolismo , Linhagem , Transtornos Peroxissômicos/metabolismo , Fenótipo , Fatores de Tempo , Adulto Jovem
17.
J Inherit Metab Dis ; 40(1): 121-130, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696117

RESUMO

Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.


Assuntos
Variação Genética/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Erros Inatos do Metabolismo/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Morte Celular/genética , Células Cultivadas , Criança , Exoma/genética , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Serina Proteases/genética , Síndrome
19.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693233

RESUMO

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Genes Dominantes/genética , Doenças Mitocondriais/genética , Mutação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Idade de Início , Arilamina N-Acetiltransferase/genética , Criança , Pré-Escolar , Transporte de Elétrons/genética , Exoma/genética , Feminino , Humanos , Lactente , Recém-Nascido , Isoenzimas/genética , Masculino , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo
20.
Am J Med Genet A ; 170(11): 2835-2846, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27667800

RESUMO

KBG syndrome is characterized by short stature, distinctive facial features, and developmental/cognitive delay and is caused by mutations in ANKRD11, one of the ankyrin repeat-containing cofactors. We describe 32 KBG patients aged 2-47 years from 27 families ascertained via two pathways: targeted ANKRD11 sequencing (TS) in a group who had a clinical diagnosis of KBG and whole exome sequencing (ES) in a second group in whom the diagnosis was unknown. Speech delay and learning difficulties were almost universal and variable behavioral problems frequent. Macrodontia of permanent upper central incisors was seen in 85%. Other clinical features included short stature, conductive hearing loss, recurrent middle ear infection, palatal abnormalities, and feeding difficulties. We recognized a new feature of a wide anterior fontanelle with delayed closure in 22%. The subtle facial features of KBG syndrome were recognizable in half the patients. We identified 20 ANKRD11 mutations (18 novel: all truncating) confirmed by Sanger sequencing in 32 patients. Comparison of the two ascertainment groups demonstrated that facial/other typical features were more subtle in the ES group. There were no conclusive phenotype-genotype correlations. Our findings suggest that mutation of ANKRD11 is a common Mendelian cause of developmental delay. Affected patients may not show the characteristic KBG phenotype and the diagnosis is therefore easily missed. We propose updated diagnostic criteria/clinical recommendations for KBG syndrome and suggest that inclusion of ANKRD11 will increase the utility of gene panels designed to investigate developmental delay. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/genética , Deleção Cromossômica , Cromossomos Humanos Par 16 , Hibridização Genômica Comparativa , Facies , Feminino , Humanos , Masculino , Fenótipo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA