Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512765

RESUMO

Acute hepatic porphyria comprises a group of rare, genetic diseases caused by mutations in genes involved in heme biosynthesis. Patients can experience acute neurovisceral attacks, debilitating chronic symptoms, and long-term complications. There is a lack of multinational, prospective data characterizing the disease and current treatment practices in severely affected patients. EXPLORE is a prospective, multinational, natural history study characterizing disease activity and clinical management in patients with acute hepatic porphyria who experience recurrent attacks. Eligible patients had a confirmed acute hepatic porphyria diagnosis and had experienced ≥3 attacks in the prior 12 months or were receiving prophylactic treatment. A total of 112 patients were enrolled and followed for at least 6 months. In the 12 months prior to the study, patients reported a median (range) of 6 (0-52) acute attacks, with 52 (46%) patients receiving hemin prophylaxis. Chronic symptoms were reported by 73 (65%) patients, with 52 (46%) patients experiencing these daily. During the study, 98 (88%) patients experienced a total of 483 attacks, 77% of which required treatment at a healthcare facility and/or hemin administration (median [range] annualized attack rate 2.0 [0.0-37.0]). Elevated levels of hepatic δ-aminolevulinic acid synthase 1 messenger ribonucleic acid levels, δ-aminolevulinic acid, and porphobilinogen compared with the upper limit of normal in healthy individuals were observed at baseline and increased further during attacks. Patients had impaired quality of life and increased healthcare utilization. Conclusions: Patients experienced attacks often requiring treatment in a healthcare facility and/or with hemin, as well as chronic symptoms that adversely influence day-to-day functioning. In this patient group, the high disease burden and diminished quality of life highlight the need for novel therapies. This article is protected by copyright. All rights reserved.

2.
Mol Genet Metab ; 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31395332

RESUMO

Erythropoietic protoporphyria (EPP), the most common porphyria of childhood and the third most common porphyria of adulthood, is characterized clinically by painful, non-blistering cutaneous photosensitivity. Two distinct inheritance patterns involving mutations affecting genes that encode enzymes of the heme biosynthetic pathway underlie the clinical phenotype. Aminolevulinic acid synthase 2 (ALAS2), the rate limiting enzyme of the heme pathway in the erythron, is a therapeutic target in EPP because inhibiting enzyme function would reduce downstream production of protoporphyrin IX (PPIX), preventing accumulation of the toxic molecule and thereby ameliorating symptoms. Isoniazid (INH) is widely used for treatment of latent and active M. tuberculosis (TB). Sideroblastic anemia is observed in some patients taking INH, and studies have shown that this process is a consequence of inhibition of ALAS2 by INH. Based on these observations, we postulated that INH might have therapeutic activity in patients with EPP. We challenged this hypothesis in a murine model of EPP and showed that, after 4 weeks of treatment with INH, both plasma PPIX and hepatic PPIX were significantly reduced. Next, we tested the effect of INH on patients with EPP. After eight weeks, no significant difference in plasma or red cell PPIX was observed among the 15 patients enrolled in the study. These results demonstrate that while INH can lower PPIX in an animal model of EPP, the standard dose used to treat TB is insufficient to affect levels in humans.

3.
Genet Med ; 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31073229

RESUMO

With the advent of precision and genomic medicine, a critical issue is whether a disease gene variant is pathogenic or benign. Such is the case for the three autosomal dominant acute hepatic porphyrias (AHPs), including acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria, each resulting from the half-normal enzymatic activities of hydroxymethylbilane synthase, coproporphyrinogen oxidase, and protoporphyrinogen oxidase, respectively. To date, there is no public database that documents the likely pathogenicity of variants causing the porphyrias, and more specifically, the AHPs with biochemically and clinically verified information. Therefore, an international collaborative with the European Porphyria Network and the National Institutes of Health/National Center for Advancing Translational Sciences/National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NCATS/NIDDK)-sponsored Porphyrias Consortium of porphyria diagnostic experts is establishing an online database that will collate biochemical and clinical evidence verifying the pathogenicity of the published and newly identified variants in the AHP-causing genes. The overall goal of the International Porphyria Molecular Diagnostic Collaborative is to determine the pathogenic and benign variants for all eight porphyrias. Here we describe the overall objectives and the initial efforts to validate pathogenic and benign variants in the respective heme biosynthetic genes causing the AHPs.

4.
Mol Genet Metab ; 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30737139

RESUMO

Mouse models of the human porphyrias have proven useful for investigations of disease pathogenesis and to facilitate the development of new therapeutic approaches. To date, mouse models have been generated for all major porphyrias, with the exception of X-linked protoporphyria (XLP) and the ultra rare 5-aminolevulinic acid dehydratase deficient porphyria (ADP). Mouse models have been generated for the three autosomal dominant acute hepatic porphyrias, acute intermittent porphyria (AIP), hereditary coproporphyria (HCP), and variegate porphyria (VP). The AIP mice, in particular, provide a useful investigative model as they have been shown to have acute biochemical attacks when induced with the prototypic porphyrinogenic drug, phenobarbital. In addition to providing important insights into the disease pathogenesis of the neurological impairment in AIP, these mice have been valuable for preclinical evaluation of liver-targeted gene therapy and RNAi-mediated approaches. Mice with severe HMBS deficiency, which clinically and biochemically mimic the early-onset homozygous dominant AIP (HD-AIP) patients, have been generated and were used to elucidate the striking phenotypic differences between AIP and HD-AIP. Mice modeling the hepatocutaneous porphyria, porphyria cutanea tarda (PCT), made possible the identification of the iron-dependent inhibitory mechanism of uroporphyrinogen decarboxylase (UROD) that leads to symptomatic PCT. Mouse models for the two autosomal recessive erythropoietic porphyrias, congenital erythropoietic porphyria (CEP) and erythropoeitic protoporphyria (EPP), recapitulate many of the clinical and biochemical features of the severe human diseases and have been particularly useful for evaluation of bone marrow transplantation and hematopoietic stem cell (HSC)-based gene therapy approaches. The EPP mice have also provided valuable insights into the underlying pathogenesis of EPP-induced liver damage and anemia.

5.
Mol Genet Metab ; 2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30777612

RESUMO

Acute Intermittent Porphyria (AIP), an autosomal dominant hepatic disorder, results from hydroxymethylbilane synthase (HMBS) mutations that decrease the encoded enzymatic activity, thereby predisposing patients to life-threatening acute neurovisceral attacks. The ~1% penetrance of AIP suggests that other genetic factors modulate the onset and severity of the acute attacks. Here, we characterized the hepatic transcriptomic response to phenobarbital (PB) administration in AIP mice, which mimics the biochemical attacks of AIP. At baseline, the mRNA profiles of 14,138 hepatic genes prior to treatment were remarkably similar between AIP and the congenic wild-type (WT) mice. After PB treatment (~120 mg/kg x 3d), 1347 and 1120 genes in AIP mice and 422 and 404 genes in WT mice were uniquely up- and down-regulated, respectively, at a False Discovery Rate < 0.05. As expected, the ALAS1 expression increased 4.5-fold and 15.9-fold in the WT and AIP mice, respectively. ALA-dehydrogenase also was induced ~1.7-fold in PB-induced AIP mice, but was unchanged in PB-induced WT mice. There was no statistically significant difference in the overall expression of 155 hepatic cytochrome P450 enzymes, although Cyp2c40, Cyp2c68, Cyp2c69, Mgst3 were upregulated only in PB-induced AIP mice (>1.9-fold) and Cyp21a1 was upregulated only in PB-induced WT mice (>9-fold). Notably, the genes differentially expressed in induced AIP mice were enriched in circadian rhythm, mitochondria biogenesis and electron transport, suggesting these pathways were involved in AIP mice responding to PB treatment. These results advance our understanding of the hepatic metabolic changes in PB-induced AIP mice and have implications in the pathogenesis of AIP acute attacks.

6.
N Engl J Med ; 380(6): 549-558, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30726693

RESUMO

BACKGROUND: Induction of delta aminolevulinic acid synthase 1 ( ALAS1) gene expression and accumulation of neurotoxic intermediates result in neurovisceral attacks and disease manifestations in patients with acute intermittent porphyria, a rare inherited disease of heme biosynthesis. Givosiran is an investigational RNA interference therapeutic agent that inhibits hepatic ALAS1 synthesis. METHODS: We conducted a phase 1 trial of givosiran in patients with acute intermittent porphyria. In part A of the trial, patients without recent porphyria attacks (i.e., no attacks in the 6 months before baseline) were randomly assigned to receive a single subcutaneous injection of one of five ascending doses of givosiran (0.035, 0.10, 0.35, 1.0, or 2.5 mg per kilogram of body weight) or placebo. In part B, patients without recent attacks were randomly assigned to receive once-monthly injections of one of two doses of givosiran (0.35 or 1.0 mg per kilogram) or placebo (total of two injections 28 days apart). In part C, patients who had recurrent attacks were randomly assigned to receive injections of one of two doses of givosiran (2.5 or 5.0 mg per kilogram) or placebo once monthly (total of four injections) or once quarterly (total of two injections) during a 12-week period, starting on day 0. Safety, pharmacokinetic, pharmacodynamic, and exploratory efficacy outcomes were evaluated. RESULTS: A total of 23 patients in parts A and B and 17 patients in part C underwent randomization. Common adverse events included nasopharyngitis, abdominal pain, and diarrhea. Serious adverse events occurred in 6 patients who received givosiran in parts A through C combined. In part C, all 6 patients who were assigned to receive once-monthly injections of givosiran had sustained reductions in ALAS1 messenger RNA (mRNA), delta aminolevulinic acid, and porphobilinogen levels to near normal. These reductions were associated with a 79% lower mean annualized attack rate than that observed with placebo (exploratory efficacy end point). CONCLUSIONS: Once-monthly injections of givosiran in patients who had recurrent porphyria attacks resulted in mainly low-grade adverse events, reductions in induced ALAS1 mRNA levels, nearly normalized levels of the neurotoxic intermediates delta aminolevulinic acid and porphobilinogen, and a lower attack rate than that observed with placebo. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02452372 .).


Assuntos
5-Aminolevulinato Sintetase/antagonistas & inibidores , Amidas/administração & dosagem , Porfiria Aguda Intermitente/tratamento farmacológico , Terapêutica com RNAi , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Adulto , Amidas/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Humanos , Injeções Subcutâneas , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Porfobilinogênio/sangue , RNA Mensageiro/metabolismo , RNA Mensageiro/urina
7.
J Inherit Metab Dis ; 42(1): 186-194, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30740734

RESUMO

Acute intermittent porphyria (AIP), an autosomal dominant disorder due to the half-normal activity of hydroxymethylbilane synthase (HMBS), is characterized by acute neurovisceral attacks that are precipitated by factors that induce heme biosynthesis. Molecular diagnosis is the most sensitive and specific diagnostic test for AIP, and importantly, it permits the identification of asymptomatic family members for genetic counseling and avoidance of precipitating factors. Here, we report the identification of 40 novel HMBS mutations, including 11 missense, four nonsense, 16 small insertions or deletions, eight consensus splice site mutations, and a complex insertion-deletion mutation in unrelated individuals with AIP. Prokaryotic expression of the missense mutations demonstrated that all mutants had ≤5% of expressed wildtype activity, except for c.1039G>C (p.A347P), which had 51% residual HMBS activity but was markedly thermolabile. Of note, the mutation c.612G>T (p.Q204H) altered the last nucleotide of exon 10, which resulted in an alternative HMBS transcript with an in-frame nine base-pair deletion at the 3'-terminus of exon 10 (encoding protein Q204HΔ3). When expressed, Q204HΔ3 and an in-frame three base-pair deletion (c.639_641delTGC) had no detectable HMBS activity. Western blot analyses and mapping of the missense mutations on the human HMBS crystal structure revealed that mutations near the active site or at the dimerization interface resulted in stably expressed proteins, while most that altered surface residues resulted in unstable proteins, presumably due to improper protein folding. These studies identified novel pathogenic HMBS mutations and expanded the molecular heterogeneity of AIP.

8.
Pharmacogenomics ; 20(1): 9-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30730286

RESUMO

AIM: To comprehensively interrogate CYP2D6 by integrating genotyping, copy number analysis and novel strategies to identify CYP2D6*36 and characterize CYP2D6 duplications. METHODS: Genotyping of 16 CYP2D6 alleles, multiplex ligation-dependent probe amplification (MLPA) and CYP2D6*36 and duplication allele-specific genotyping were performed on 427 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. RESULTS: A novel PCR strategy determined that almost half of all CYP2D6*10 (100C>T) alleles are actually *36 (isolated or in tandem with *10) and all identified duplication alleles were characterized. Integrated results from all testing platforms enabled the refinement of genotype frequencies across all studied populations. CONCLUSION: The polymorphic CYP2D6 gene requires comprehensive interrogation to characterize allelic variation across ethnicities, which was enabled in this study by integrating multiplexed genotyping, MLPA copy number analysis, novel PCR strategies and duplication allele-specific genotyping.

9.
Hum Mol Genet ; 28(11): 1755-1767, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615115

RESUMO

Acute intermittent porphyria (AIP) is an inborn error of heme biosynthesis due to the deficiency of hydroxymethylbilane synthase (HMBS) activity. Human AIP heterozygotes have episodic acute neurovisceral attacks that typically start after puberty, whereas patients with homozygous dominant AIP (HD-AIP) have early-onset chronic neurological impairment, including ataxia and psychomotor retardation. To investigate the dramatically different manifestations, knock-in mice with human HD-AIP missense mutations c.500G>A (p.Arg167Glu) or c.518_519GC>AG (p.Arg173Glu), designated R167Q or R173Q mice, respectively, were generated and compared with the previously established T1/T2 mice with ~30% residual HMBS activity and the heterozygous AIP phenotype. Homozygous R173Q mice were embryonic lethal, while R167Q homozygous mice (R167Q+/+) had ~5% of normal HMBS activity, constitutively elevated plasma and urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), profound early-onset ataxia, delayed motor development and markedly impaired rotarod performance. Central nervous system (CNS) histology was grossly intact, but CNS myelination was delayed and overall myelin volume was decreased. Heme concentrations in liver and brain were similar to those of T1/T2 mice. Notably, ALA and PBG concentrations in the cerebral spinal fluid and CNS regions were markedly elevated in R167Q+/+ mice compared with T1/T2 mice. When the T1/T2 mice were administered phenobarbital, ALA and PBG markedly accumulated in their liver and plasma, but not in the CNS, indicating that ALA and PBG do not readily cross the blood-brain barrier. Taken together, these studies suggest that the severe HD-AIP neurological phenotype results from decreased myelination and the accumulation of locally produced neurotoxic porphyrin precursors within the CNS.

10.
Mol Med ; 25(1): 4, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678654

RESUMO

BACKGROUND: X-linked protoporphyria (XLP) (MIM 300752) is an erythropoietic porphyria due to gain-of-function mutations in the last exon (Ducamp et al., Hum Mol Genet 22:1280-88, 2013) of the erythroid-specific aminolevulinate synthase gene (ALAS2). Five ALAS2 exon 11 variants identified by the NHBLI Exome sequencing project (p.R559H, p.E565D, p.R572C, p.S573F and p.Y586F) were expressed, purified and characterized in order to assess their possible contribution to XLP. To further characterize the XLP gain-of-function region, five novel ALAS2 truncation mutations (p.P561X, p.V562X, p.H563X, p.E569X and p.F575X) were also expressed and studied. METHODS: Site-directed mutagenesis was used to generate ALAS2 mutant clones and all were prokaryotically expressed, purified to near homogeneity and characterized by protein and enzyme kinetic assays. Standard deviations were calculated for 3 or more assay replicates. RESULTS: The five ALAS2 single nucleotide variants had from 1.3- to 1.9-fold increases in succinyl-CoA Vmax and 2- to 3-fold increases in thermostability suggesting that most could be gain-of-function modifiers of porphyria instead of causes. One SNP (p.R559H) had markedly low purification yield indicating enzyme instability as the likely cause for XLSA in an elderly patient with x-linked sideroblastic anemia. The five novel ALAS2 truncation mutations had increased Vmax values for both succinyl-CoA and glycine substrates (1.4 to 5.6-fold over wild-type), while the Kms for both substrates were only modestly changed. Of interest, the thermostabilities of the truncated ALAS2 mutants were significantly lower than wild-type, with an inverse relationship to Vmax fold-increase. CONCLUSIONS: Patients with porphyrias should always be assessed for the presence of the ALAS2 gain-of-function modifier variants identified here. A key region of the ALAS2 carboxyterminal region is identified by the truncation mutations studied here and the correlation of increased thermolability with activity suggests that increased molecular flexibility/active site openness is the mechanism of enhanced function of mutations in this region providing further insights into the role of the carboxyl-terminal region of ALAS2 in the regulation of erythroid heme synthesis.


Assuntos
5-Aminolevulinato Sintetase/genética , Mutação com Ganho de Função , 5-Aminolevulinato Sintetase/metabolismo , Estabilidade Enzimática , Éxons , Cinética , Polimorfismo de Nucleotídeo Único
11.
Mol Genet Metab ; 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639047

RESUMO

BACKGROUND AND AIMS: Acute intermittent porphyria (AIP) results from a partial deficiency of porphobilinogen deaminase (PBGD). Symptomatic AIP patients, most of whom are women, experience acute attacks characterized by severe abdominal pain and abrupt increases in blood pressure. Here, we characterized the reactivity of mesenteric arteries from male and female AIP mice with ~30% of normal PBGD activity and wild type C57BL/6 mice. METHODS: An acute porphyric attack was induced in AIP mice by treatment with phenobarbital. Vascular responses to K+, phenylephrine (PE), acetylcholine (ACh), and hemin were determined (Wire Multi Myograph). RESULTS: Maximal contraction to PE was increased in arteries from male and female AIP mice (p < .05) during an induced attack of acute porphyria. Female AIP arteries had increased sensitivity to PE (p < .05) even after nitric oxide (NO) blockade with Nω-nitro-L-arginine methyl ester (L-NAME) (p < .05). Maximal relaxation to ACh was similar in males and females with lower sensitivity in female AIP arteries (p < .05). Hemin induced greater relaxation in AIP arteries in both males and females (p < .05). SUMMARY/CONCLUSIONS: Sex differences in this AIP mouse model include a pro-contractile response in females. These alterations may contribute to the increased blood pressure during an acute attack and provide a novel mechanism of action whereby heme ameliorates the attacks.

12.
Mol Genet Metab ; 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30514647

RESUMO

Porphyria Cutanea Tarda (PCT) is a cutaneous porphyria that results from the hepatic inhibition of the heme biosynthetic enzyme uroporphyrinogen decarboxylase (UROD), and can occur either in the absence or presence of an inherited heterozygous UROD mutation (PCT subtypes 1 and 2, respectively). A heterozygous UROD mutation causes half-normal levels of UROD activity systemically, which is a susceptibility factor but is not sufficient alone to cause type 2 PCT. In both Types 1 and 2 PCT, the cutaneous manifestations are precipitated by additional factors that lead to generation of an inhibitor that more profoundly reduces hepatic UROD activity. PCT is an iron-related disorder, and many of its known susceptibility factors, which include infections (e.g. hepatitis C virus, HIV), high alcohol consumption, smoking, estrogens, and genetic traits (e.g. hemochromatosis mutations) can increase hepatic iron accumulation. Hepatoerythropoietic Porphyria (HEP) is a rare autosomal recessive disease that results from homozygosity or compound heterozygosity for UROD mutations and often causes infantile or childhood onset of both erythropoietic and cutaneous manifestations. During the 11-year period from 01/01/2007 through 12/31/2017, the Mount Sinai Porphyrias Diagnostic Laboratory provided molecular diagnostic testing for 387 unrelated patients with PCT and four unrelated patients with HEP. Of the 387 unrelated individuals tested for Type 2 PCT, 79 (20%) were heterozygous for UROD mutations. Among 26 family members of mutation-positive PCT patients, eight (31%) had the respective family mutation. Additionally, of the four unrelated HEP patients referred for UROD mutation analyses, all had homozygosity or compound heterozygosity for UROD mutations, and all eight asymptomatic family members were heterozygotes for UROD mutations. Of the UROD mutations identified, 19 were novel, including nine missense, two nonsense, one consensus splice-site, and seven insertions and deletions. These results expand the molecular heterogeneity of PCT and HEP by adding a total of 19 novel UROD mutations. Moreover, the results document the usefulness of molecular testing to confirm a genetic susceptibility trait in Type 2 PCT, confirm a diagnosis in HEP, and identify heterozygous family members.

13.
Mol Genet Metab ; 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30594473

RESUMO

The inborn errors of heme biosynthesis, the Porphyrias, include eight major disorders resulting from loss-of-function (LOF) or gain-of-function (GOF) mutations in eight of the nine heme biosynthetic genes. The major sites of heme biosynthesis are the liver and erythron, and the underlying pathophysiology of each of these disorders depends on the unique biochemistry, cell biology, and genetic mechanisms in these tissues. The porphyrias are classified into three major categories: 1) the acute hepatic porphyrias (AHPs), including Acute Intermittent Porphyria (AIP), Hereditary Coproporphyria (HCP), Variegate Porphyria (VP), and 5-Aminolevlulinic Acid Dehydratase Deficient Porphyria (ADP); 2) a hepatic cutaneous porphyria, Porphyria Cutanea Tarda (PCT); and 3) the cutaneous erythropoietic porphyrias, Congenital Erythropoietic Porphyria (CEP), Erythropoietic Protoporphyria (EPP), and X-Linked Protoporphyria (XLP). Their modes of inheritance include autosomal dominant with markedly decreased penetrance (AIP, VP, and HCP), autosomal recessive (ADP, CEP, and EPP), or X-linked (XLP), as well as an acquired sporadic form (PCT). There are severe homozygous dominant forms of the three AHPs. For each porphyria, its phenotype, inheritance pattern, unique genetic principles, and molecular genetic heterogeneity are presented. To date, >1000 mutations in the heme biosynthetic genes causing their respective porphyrias have been reported, including low expression alleles and genotype/phenotype correlations that predict severity for certain porphyrias. The tissue-specific regulation of heme biosynthesis and the unique genetic mechanisms for each porphyria are highlighted.

14.
Mol Genet Metab ; 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30454868

RESUMO

The erythropoietic porphyrias are inborn errors of heme biosynthesis with prominent cutaneous manifestations. They include autosomal recessive Congenital Erythropoietic Porphyria (CEP) due to loss-of-function (LOF) mutations in the Uroporphyrinogen III Synthase (UROS) gene, Erythropoietic Protoporphyria (EPP) due to LOF mutations in the ferrochelatase (FECH) gene, and X-Linked Protoporphyria (XLP) due to gain-of-function mutations in the terminal exon of the Aminolevulinic Acid Synthase 2 (ALAS2) gene. During the 11-year period from 01/01/2007 through 12/31/2017, the Mount Sinai Porphyrias Diagnostic Laboratory provided molecular diagnostic testing for one or more of these disorders in 628 individuals, including 413 unrelated individuals. Of these 628, 120 patients were tested for CEP, 483 for EPP, and 331 for XLP, for a total of 934 tests. For CEP, 24 of 78 (31%) unrelated individuals tested had UROS mutations, including seven novel mutations. For EPP, 239 of 362 (66%) unrelated individuals tested had pathogenic FECH mutations, including twenty novel mutations. The IVS3-48 T > C low-expression allele was present in 231 (97%) of 239 mutation-positive EPP probands with a pathogenic FECH mutation. In the remaining 3%, three patients with two different FECH mutations in trans were identified. For XLP, 24 of 250 (10%) unrelated individuals tested had ALAS2 exon 11 mutations. No novel ALAS2 mutations were identified. Among family members referred for testing, 33 of 42 (79%) CEP, 62 of 121 (51%) EPP, and 31 of 81 (38%) XLP family members had the respective family mutation. Mutation-positive CEP, EPP, and XLP patients who had been biochemically tested had marked elevations of the disease-appropriate porphyrin intermediates. These results expand the molecular heterogeneity of the erythropoietic porphyrias by adding a total of 27 novel mutations. The results document the usefulness of molecular testing to confirm the positive biochemical findings in these patients and to identify heterozygous family members.

15.
Mol Genet Metab ; 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30385147

RESUMO

The acute hepatic porphyrias (AHPs) are inborn errors of heme biosynthesis, which include three autosomal dominant porphyrias, Acute Intermittent Porphyria (AIP), Hereditary Coproporphyria (HCP), and Variegate Porphyria (VP), and the ultra-rare autosomal recessive porphyria, δ-Aminolevulinic Acid Dehydratase Deficiency Porphyria (ADP). AIP, HCP, VP, and ADP each results from loss-of-function (LOF) mutations in their disease-causing genes: hydroxymethylbilane synthase (HMBS); coproporphyrinogen oxidase (CPOX); protoporphyrinogen oxidase (PPOX), and δ-aminolevulinic acid dehydratase (ALAD), respectively. During the 11-year period from January 1, 2007 through December 31, 2017, the Mount Sinai Porphyrias Diagnostic Laboratory diagnosed 315 unrelated AIP individuals with HMBS mutations, including 46 previously unreported mutations, 29 unrelated HCP individuals with CPOX mutations, including 11 previously unreported mutations, and 54 unrelated VP individuals with PPOX mutations, including 20 previously unreported mutations. Overall, of the 1692 unrelated individuals referred for AHP molecular diagnostic testing, 398 (23.5%) had an AHP mutation. Of the 650 family members of mutation-positive individuals tested for an autosomal dominant AHP, 304 (46.8%) had their respective family mutation. These data expand the molecular genetic heterogeneity of the AHPs and document the usefulness of molecular testing to confirm the positive biochemical findings in symptomatic patients and identify at-risk asymptomatic family members.

16.
Mol Genet Metab ; 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30391163

RESUMO

Accumulation of protoporphyrin IX (PPIX) and Zn-PPIX, are the clinical hallmarks of protoporphyria. Phenotypic expression of protoporphyria is due to decreased activity of ferrochelatase (FECH) or to increased activity of aminolevulinic acid synthase (ALAS) in red blood cells. Other genetic defects have been shown to contribute to disease severity including loss of function mutations in the mitochondrial AAA-ATPase, CLPX and mutations in the Iron-responsive element binding protein 2 (IRP2), in mice. It is clear that multiple paths lead to a common phenotype of excess plasma PPIX that causes a phototoxic reaction on sun exposed areas. In this study we examined the association between mitochondrial iron acquisition and utilization with activity of FECH. Our data show that there is a metabolic link between the activity FECH and levels of MFRN1 mRNA. We examined the correlation between FECH activity and MFRN1 mRNA in cell lines established from patients with the classical protoporphyria, porphyria due to defects in ALAS2 mutations. Our data confirm MFRN1 message levels positively correlated with FECH enzymatic activity in all cell types.

17.
PLoS One ; 13(10): e0203597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289930

RESUMO

Research in photobiology is currently limited by a lack of devices capable of delivering precise and tunable irradiation to cells in a high-throughput format. This limits researchers to using expensive commercially available or custom-built light sources which make it difficult to replicate, standardize, optimize, and scale experiments. Here we present an open-source Microplate Photoirradiation System (MPS) developed to enable high-throughput light experiments in standard 96 and 24-well microplates for a variety of applications in photobiology research. This open-source system features 96 independently controlled LEDs (4 LEDs per well in 24-well), Wi-Fi connected control and programmable graphical user interface (GUI) for control and programming, automated calibration GUI, and modular control and LED boards for maximum flexibility. A web-based GUI generates light program files containing irradiation parameters for groups of LEDs. These parameters are then uploaded wirelessly, stored and used on the MPS to run photoirradiation experiments inside any incubator. A rapid and semi-quantitative porphyrin metabolism assay was also developed to validate the system in wild-type fibroblasts. Protoporphyrin IX (PpIX) fluorescence accumulation was induced by incubation with 5-aminolevulinic acid (ALA), a photosensitization method leveraged clinically to destroy malignant cell types in a process termed photodynamic therapy (PDT), and cells were irradiated with 405nm light with varying irradiance, duration and pulsation parameters. Immediately after light treatment with the MPS, subsequent photobleaching was measured in live, adherent cells in both 96-well and a 24-well microplates using a microplate reader. Results demonstrate the utility and reliability of the Microplate Photoirradiation System to irradiate cells with precise irradiance and timing parameters in order to measure PpIx photobleaching kinetics in live adherent cells and perform comparable experiments with both 24 and 96 well microplate formats. The high-throughput capability of the MPS enabled measurement of enough irradiance conditions in a single microplate to fit PpIX fluorescence to a bioexponential decay model of photobleaching, as well as reveal a dependency of photobleaching on duty-cycle-but not frequency-in a pulsed irradiance regimen.

18.
Genet Med ; 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093709

RESUMO

PURPOSE: We conducted a consented pilot newborn screening (NBS) for Pompe, Gaucher, Niemann-Pick A/B, Fabry, and MPS 1 to assess the suitability of these lysosomal storage disorders (LSDs) for public health mandated screening. METHODS: At five participating high-birth rate, ethnically diverse New York City hospitals, recruiters discussed the study with postpartum parents and documented verbal consent. Screening on consented samples was performed using multiplexed tandem mass spectrometry. Screen-positive infants underwent confirmatory enzymology, DNA testing, and biomarker quantitation when available. Affected infants are being followed for clinical management and long-term outcome. RESULTS: Over 4 years, 65,605 infants participated, representing an overall consent rate of 73%. Sixty-nine infants were screen-positive. Twenty-three were confirmed true positives, all of whom were predicted to have late-onset phenotypes. Six of the 69 currently have undetermined disease status. CONCLUSION: Our results suggest that NBS for LSDs is much more likely to detect individuals at risk for late-onset disease, similar to results from other NBS programs. This work has demonstrated the feasibility of using a novel consented pilot NBS study design that can be modified to include other disorders under consideration for public health implementation as a means to gather critical evidence for evidence-based NBS practices.

19.
Pharmacogenomics ; 19(9): 761-770, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790428

RESUMO

AIM: To develop a SULT1A1 multiplex ligation-dependent probe amplification assay and to investigate multi-ethnic copy number variant frequencies. METHODS: A novel multiplex ligation-dependent probe amplification assay was developed and tested on 472 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish individuals. RESULTS: The frequencies of atypical total copy number (i.e., greater or less than two) were 38.7% for Hispanics, 38.9% for Ashkenazi Jewish, 43.2% for Caucasians, 53.6% for Asians and 64.1% for African-Americans. Heterozygous SULT1A1 deletion carriers (slow sulfators) were most common among Caucasians (8.4%), whereas African-Americans had the highest frequencies of three or more copies (rapid sulfators; 60.9%). CONCLUSION: Different ethnic and racial populations have varying degrees of SULT1A1-mediated sulfation activity, which warrants further research and that may have utility for drug response prediction among SULT1A1-metabolized medications.

20.
Transplantation ; 102(11): 1924-1933, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29688992

RESUMO

BACKGROUND: Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene that obliterate or markedly reduce α-galactosidase A activity. This results in the systemic accumulation of its glycosphingolipid substrates in body fluids and organs, including the kidney. Fabry nephropathy can lead to end-stage renal disease requiring kidney transplantation. Little is known about its long-term outcomes and the overall patient survival after kidney transplantation. METHODS: Here, we report 17 Fabry patients (15 male and 2 female subjects) who received kidney transplants and their long-term treatment and follow-up at 4 specialized Fabry centers. RESULTS: The posttransplant follow-up ranged to 25 years, with a median of 11.5 (range, 0.8-25.5] years. Graft survival was similar, and death-censored graft survival was superior to matched controls. Fabry patients died with functioning kidneys, mostly from cardiac causes. In 2 male subjects 14 and 23 years posttransplant, the grafts had a few typical FD lamellar inclusions, presumably originating from invading host macrophages and vascular endothelial cells. CONCLUSIONS: We conclude that kidney transplantation has an excellent long-term outcome in FD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA