Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(20): 17492-17500, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647440

RESUMO

Core-shell colloids make attractive feedstocks for three-dimensional (3D) printing mixed oxide glass materials because they enable synthetic control of precursor dimensions and compositions, improving glass fabrication precision. Toward that end, we report the design and use of core-shell germania-silica (GeO2-SiO2) colloids and their use as precursors to fabricate GeO2-SiO2 glass monoliths by direct ink write (DIW) 3D printing. By this method, GeO2 colloids were prepared in solution using sol-gel chemistry and formed oblong, raspberry-like agglomerates with ∼15 nm diameter primary particles that were predominantly amorphous but contained polycrystalline domains. An ∼15 nm encapsulating SiO2 shell layer was formed directly on the GeO2 core agglomerates to form core-shell GeO2-SiO2 colloids. For glass 3D printing, GeO2-SiO2 colloidal sols were formulated into a viscous ink by solvent exchange, printed into monoliths by DIW additive manufacturing, and sintered to transparent glasses. Characterization of the glass components demonstrates that the core-shell GeO2-SiO2 presents a feasible route to prepare quality, optically transparent low wt % GeO2-SiO2 glasses by DIW printing. Additionally, the results offer a novel, hybrid colloid approach to fabricating 3D-printed Ge-doped silica glass.

3.
ACS Appl Mater Interfaces ; 12(5): 6736-6741, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31934741

RESUMO

Direct ink writing (DIW) three-dimensional (3D) printing provides a revolutionary approach to fabricating components with gradients in material properties. Herein, we report a method for generating colloidal germania feedstock and germania-silica inks for the production of optical quality germania-silica (GeO2-SiO2) glasses by DIW, making available a new material composition for the development of multimaterial and functionally graded optical quality glasses and ceramics by additive manufacturing. Colloidal germania and silica particles are prepared by a base-catalyzed sol-gel method and converted to printable shear-thinning suspensions with desired viscoelastic properties for DIW. The volatile solvents are then evaporated, and the green bodies are calcined and sintered to produce transparent, crack-free glasses. Chemical and structural evolution of GeO2-SiO2 glasses is confirmed by nuclear magnetic resonance, X-ray diffraction, and Raman spectroscopy. UV-vis transmission and optical homogeneity measurements reveal comparable performance of the 3D printed GeO2-SiO2 glasses to glasses produced using conventional approaches and improved performance over 3D printed TiO2-SiO2 inks. Moreover, because GeO2-SiO2 inks are compatible with DIW technology, they offer exciting options for forming new materials with patterned compositions such as gradients in the refractive index that cannot be achieved with conventional manufacturing approaches.

4.
Biointerphases ; 12(5): 051003, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29287475

RESUMO

Multivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods. Principal coordinate analysis of the surface property characterization and the biological assays resulted in different groupings of the xerogel coatings. In particular, the biofouling organisms were able to distinguish four coatings that were not distinguishable by the surface properties of this study. The authors used canonical analysis of principal coordinates (CAP) to identify surface properties governing attachment across all five biofouling species. The CAP pointed to surface energy and surface charge as important drivers of patterns in biological attachment, but also suggested that differentiation of the surfaces was influenced to a comparable or greater extent by the dispersive component of surface energy.


Assuntos
Organismos Aquáticos/fisiologia , Incrustação Biológica , Fenômenos Fisiológicos , Propriedades de Superfície , Animais , Briozoários/fisiologia , Dessecação , Diatomáceas/fisiologia , Géis , Análise Multivariada , Eletricidade Estática , Thoracica/fisiologia , Ulva/fisiologia
5.
Langmuir ; 33(17): 4119-4128, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28388846

RESUMO

When xerogel films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS) or 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and TEOS are formed on Al2O3 they exhibit chemically segregated domains with unique chemistries and topographies. These characteristics are important for marine antifouling. By using the ratiometric fluorescent probe 5 (and 6)-carboxy SNARF-1 (C.SNARF-1) in concert with confocal fluorescence microscopy, we determine the pH in three dimensions within these hybrid films. For the COE/TEOS film, 4-5 µm diameter dendritically shaped features form, and they extend ∼100 nm above the film base. These dendritic features are acidic (pH < 7) in comparison to the film base. Their average diameter decreases as we progress from the solution-film interface toward the film-Al2O3 interface. Planes located at the solution-film interface, film center, and film-Al2O3 interface exhibit acidic surface areas that are 20% below, 50% above, and 70% below the average COE mole fraction used to create the film. In the APTES/C8/TEOS films, 1-3 µm diameter mesa-shaped features form, and they extend up to 450 nm above the film base. These mesa features are basic (pH > 7) in comparison to the film base and are columnar in shape, extending without change in diameter throughout the entire film. From the solution-film interface the planes located within the first 3/4 of the film exhibit basic surface areas that are equivalent to the average APTES mole fraction used to create the film. However, as one approaches the film-Al2O3 interface, many new 100-200 nm basic subsurface regions appear. The basic surface area in those film planes within 400-500 nm of the film-Al2O3 interface are enriched in APTES by up to 500% above the average APTES mole fraction used to create the film.

6.
Adv Mater ; 29(26)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28452163

RESUMO

Silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

7.
Langmuir ; 32(39): 10113-10119, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27607195

RESUMO

Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 µm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.

8.
J Am Soc Mass Spectrom ; 26(11): 1963-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323616

RESUMO

Here, a matrix using two-dimensional (2D) graphene is demonstrated for the first time in the context of MALDI IMS using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Although graphene flakes have been used previously in MALDI, it is described here how a single 2D layer of graphene is applied directly on top of rat brain sections and soybean leaves. Several classes of molecules are desorbed and ionized off of the surface of the tissues examined using 2D graphene, with minimal background interference from the matrix. Moreover, no solvents are employed in application of 2D graphene, eliminating the potential for analyte diffusion in liquid droplets during matrix application. Because 2D graphene is an elemental form of carbon, an additional advantage is its high compatibility with the long duration needed for many IMS experiments. Graphical Abstract ᅟ.


Assuntos
Grafite/química , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Química Encefálica/fisiologia , Folhas de Planta/química , Ratos , Soja/química
9.
Appl Spectrosc ; 69(9): 1082-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26254028

RESUMO

We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

10.
Langmuir ; 31(11): 3510-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25738416

RESUMO

Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 µm thick base layer derived from all three precursors; (ii) 2-4 µm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 µm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.


Assuntos
Nanoestruturas/química , Membranas Artificiais , Microscopia de Força Atômica , Propilaminas/química , Silanos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...