Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Chemistry ; 26(4): 853-862, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31691394


The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2 O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2 O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2 O3 @NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2 O3 @NC electrode delivers an excellent reversible capacity of 901 mA h g-1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g-1 . Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2 O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2 O3 electrodes.

Chemistry ; 25(66): 15173-15181, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31544301


Owing to low ion/electron conductivity and large volume change, transitional metal dichalcogenides (TMDs) suffer from inferior cycle stability and rate capability when used as the anode of lithium-ion batteries (LIBs). To overcome these disadvantages, amorphous molybdenum sulfide (MoSx ) nanospheres were prepared and coated with an ultrathin carbon layer through a simple one-pot reaction. Combining X-ray photoelectron spectroscopy (XPS) with theoretical calculations, MoSx was confirmed as having a special chain molecular structure with two forms of S bonding (S2- and S2 2- ), the optimal adsorption sites of Li+ were located at S2 2- . As a result, the MoSx electrode exhibits superior cycle and rate capacities compared with crystalline 2H-MoS2 (e.g., delivering a high capacity of 612.4 mAh g-1 after 500 cycles at 1 A g-1 ). This is mainly attributed to more exposed active S2 2- sites for Li storage, more Li+ transfer pathways for improved ion conductivity, and suppressed electrode structure pulverization of MoSx derived from the inherent chain-like molecular structure. Quantitative charge storage analysis further demonstrates the improved pseudocapacitive contribution of amorphous MoSx induced by fast reaction kinetics. Moreover, the morphology contrast after cycling demonstrates the dispersion of active materials is more uniform for MoSx than 2H-MoS2 , suggesting the MoSx can well accommodate the volume stress of the electrode during discharging. Through regulating the molecular structure, this work provides an effective targeted strategy to overcome the intrinsic issues of TMDs for high-performance LIBs.

Chemistry ; 25(38): 8975-8981, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31021424


Lithium-ion batteries (LIBs) are one of the most significant energy storage devices applied in power supply facilities. However, a huge number of spent LIBs would bring harmful resource waste and environmental hazards. In this study, a benign hydrometallurgical method using phytic acid as precipitant is proposed to recover useful metallic Mn ions from spent LiMn2 O4 batteries. Besides Mn-based cathodes, this recovery process is also applicable for other commercial batteries. More importantly, for the first time, the as-obtained manganous complex is employed as a nanofiller in a polyethylene oxide matrix to largely improve Li+ conductivity and transference number. As a result, when applied in all-solid-state lithium batteries, high capacity and outstanding cyclic stability are achieved with capacity retention of 86.4 % after 60 cycles at 0.1 C. The recovery of spent lithium batteries not only has benefits for the environment and resources, but also shows great potential application in all-solid-state lithium batteries, which opens up a costless and efficient circulation pathway for clean and reliable energy storage systems.