Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 113: 231-241, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963531

RESUMO

Risk associated with heavy metals in soil has been received widespread attention. In this study, a porous biochar supported nanoscale zero-valent iron (BC-nZVI) was applied to immobilize cadmium (Cd) and lead (Pb) in clayey soil. Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process, and about 80% of heavy metals immobilization was obtained in BC-nZVI process. Addition of BC-nZVI could increase soil pH and organic matter (SOM). Cd or Pb immobilization was inhibited with coexisting organic compound 2,4-dichlorophenol (2,4-DCP), but 2,4-DCP could be removed in a simultaneous manner with Cd or Pb immobilization at low concentration levels. Simultaneous immobilization of Cd and Pb was achieved in BC-nZVI process, and both Cd and Pb availability significantly decreased. Stable Cd species inculding Cd(OH)2, CdCO3 and CdO were formed, whereas stable Pb species such as PbCO3, PbO and Pb(OH)2 were produced with BC-nZVI treatment. Simultaneous immobilization mechanism of Cd and Pb in soil by BC-nZVI was thereby proposed. This study well demonstrates that BC-nZVI has been emerged as a potential technology for the remediation of multiple heavy metals in soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cádmio/análise , Carvão Vegetal , Ferro/análise , Chumbo , Porosidade , Solo , Poluentes do Solo/análise
2.
Front Nutr ; 8: 779595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966772

RESUMO

Field-based experiments were conducted during wheat cultivation seasons of 2017-2018 and 2018-2019 to minimize the impact of hidden hunger (micronutrient deficiencies) through agronomic biofortification of two wheat cultivars with zinc and iron. Two spring-planted bread wheat cultivars: Zincol-16 (Zn-efficient) and Anaj-17 (Zn-inefficient with high-yield potential) were treated with either zinc (10 kg/ha), iron (12 kg/ha), or their combination to study their effect on some growth attributes (plant height, tillers, and spike length, etc.,), productivity, and quality. No application of zinc and iron or their combinations served as the control. Maximum Zn and Fe contents of grains were improved by sole application of Zn and Fe, respectively. A higher concentration of Ca in grains was observed by the combined application of Zn and Fe. Starch contents were found maximum by sole application of Fe. Sole or combined application of Zn and Fe reduced wet gluten contents. Maximum proteins were recorded in Anaj-17 under control treatments. Zincol-16 produced maximum ionic concentration, starch contents, and wet gluten as compared to Anaj-17. Yield and growth attributes were also significantly (p < 0.05) improved by combined application as compared to the sole application of Zn or Fe. The combined application also produced the highest biological and grain yield with a maximum harvest index. Cultivar Anaj-17 was found more responsive regarding growth and yield attributes comparatively. The findings of the present study showed that the combined application of Zn and Fe produced good quality grains (more Zn, Fe, Ca, starch, and less gluten concentrations) with a maximum productivity of bread wheat cultivars.

3.
J Hazard Mater ; 416: 125930, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492860

RESUMO

The pollution of heavy metals and organic compounds has received increased attention in recent years. In the current study, a novel biochar-based iron oxide composite (FeYBC) was successfully synthesized using pomelo peel and ferric chloride solution through one-step process at moderate temperature. Results clearly demonstrate that FeYBC exhibited more efficient removal of Cr(VI) and/or phenol compared with the pristine biochar, and the maximum adsorption amounts of Cr(VI) and phenol by FeYBC could reach 24.37 and 39.32 mg g-1, respectively. A series of characterization data suggests that several iron oxides such as Fe2O3, Fe0, FeOOH and Fe3O4 were formed on the FeYBC surface as well as oxygen-containing groups. Thermodynamics study indicates that Cr(VI) and phenol adsorption by FeYBC were endothermic and exothermic processes, respectively. Langmuir adsorption isotherm and pseudo-second order models could better explain the Cr(VI) and phenol adsorption behaviors over FeYBC. The Cr(VI) adsorption might be primarily achieved through the ion exchange and surface complexation and reduction, whereas the π-π interaction and electron donor-acceptor complex mainly contributed to phenol adsorption. The findings indicate that the biochar-based iron oxide composites material was an efficient adsorbent for the remediation of industrial effluents containing Cr(VI) and phenol.


Assuntos
Poluentes Químicos da Água , Água , Adsorção , Carvão Vegetal , Cromo , Compostos Férricos , Cinética , Fenol , Poluentes Químicos da Água/análise
4.
Saudi J Biol Sci ; 28(4): 2453-2459, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911958

RESUMO

Cadmium contamination in croplands is recognized one of the major threat, seriously affecting soil health and sustainable agriculture around the globe. Cd mobility in wastewater irrigated soils can be curtailed through eco-friendly and cost effective organic soil amendments (biochars) that eventually minimizes its translocation from soil to plant. This study explored the possible effects of various types of plants straw biochar as soil amendments on cadmium (Cd) phytoavailability in wastewater degraded soil and its subsequent accumulation in sunflower tissues. The studied biochars including rice straw (RS), wheat straw (WS), acacia (AC) and sugarcane bagasse (SB) to wastewater irrigated soil containing Cd. Sunflower plant was grown as a test plant and Cd accumulation was recorded in its tissues, antioxidant enzymatic activity chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM and Soluble Cd) were also examined. Results revealed that addition of biochar significantly minimized Cd mobility in soil by 53.4%, 44%, 41% and 36% when RS, WS, AC and SB were added at 2% over control. Comparing the control soil, biochar amended soil effectively reduced Cd uptake via plants shoots by 71.7%, 60.6%, 59% and 36.6%, when RS, WS, AC and SB. Among all the biochar, rice husk induced biochar significantly reduced oxidative stress and reduced SOD, POD and CAT activity by 49%, 40.5% and 46.5% respectively over control. In addition, NPK were significantly increased among all the added biochars in soil-plant system as well as improved chlorophyll contents relative to non-bioachar amended soil. Thus, among all the amendments, rice husk and wheat straw biochar performed well and might be considered the suitable approach for sunflower growth in polluted soil.

5.
Saudi J Biol Sci ; 28(4): 2534-2539, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33911965

RESUMO

Soil amendment with two types of composts: animal manure (AC) and vegetable waste (VC) induced composts have potential to alleviate Cd toxicity to maize in contaminated soil. Therefore, Cd mobility in waste water irrigated soil can be addressed through eco-friendly and cost effective organic soil amendments AC and VC that eventually reduces its translocation from polluted soil to maize plant tissues. The comparative effectiveness of AC and VC at 3% rate were evaluated on Cd solubility, its accumulation in maize tissues, translocation from root to shoot, chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM). Results revealed that the addition of organic soil amendments significantly minimized Cd mobility and leachability in soil by 58.6% and 47%, respectively in VC-amended soil over control. While, the reduction was observed by 61.7% and 57%, respectively when AC was added at 3% over control. Comparing the control soil, Cd uptake effectively reduced via plants shoots and roots by 50%, 46% respectively when VC was added in polluted soil. However, Cd uptake was decreased in maize shoot and roots by 58% and 52.4% in AC amended soil at 3% rate, respectively. Additionally, NPK contents were significantly improved in polluted soil as well as in plant tissues in both composts amended soil Comparative to control, the addition of composts significantly improved the maize dry biomass and chlorophyll contents at 3% rate. Thus, present study confirmed that the addition of animal manure derived compost (AC) at 3% rate performed well and might be consider the suitable approach relative to vegetable compost for maize growth in polluted soil.

6.
J Environ Manage ; 278(Pt 1): 111518, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113397

RESUMO

Nowadays, nanoscale zero valent iron (nZVI) has been extensively applied for the decontamination of various pollutants, but passivation of nZVI severely affects its reactivity in use. In this study, ultrasound (US)-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI (AMD-nZVI) coupling with FeS2 system was systematically examined. Results show that the presence of FeS2 and US induced a synergistic enhancement of Cr(VI) removal by AMD-nZVI. Nearly 98% of Cr(VI) removal was achieved by AMD-nZVI/FeS2/US process within 60 min under optimal reaction conditions. Several coexisting substances with lower concentration including Pb(II), Ni(II), bisphenol A (BPA) and 2,4-diclorophenol (2,4-DCP) could be effectively removed in simultaneous manner with Cr(VI) removal. The inhibitory order of water matrix species on Cr(VI) removal was NO3- > PO43- > HCO3- > Ca2+ > Mg2+ > Cl-, and a serious suppression effect was induced by humic acid (HA). Addition of ethylene diamine tetra-acetic acid (EDTA) and citric acid (CA) could enhance Cr(VI) removal rate. An enhanced reaction mechanism was proposed, which involved the regeneration of more Fe2+ and H+ by AMD-nZVI/FeS2/US process, leading to the reduction of Cr(VI) by AMD-nZVI and FeS2 into Cr(III) species inculding Cr2O3 and Cr(OH)3. This study well demonstrates that AMD-nZVI/FeS2/US process is considered as a potential candidate for the remediation of Cr(VI) in real wasterwater.


Assuntos
Ferro , Poluentes Químicos da Água , Ácidos , Adsorção , Cromo/análise , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 754: 142155, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254865

RESUMO

In this study, bentonite-supported nZVI (B-nZVI) was used as a catalyst to activate H2O2 for atrazine (ATZ) degradation in the presence of FeS2. Results indicated that ATZ degradation by B-nZVI/H2O2 process was significantly enhanced when FeS2 was introduced, and nearly 98% of ATZ was degraded by B-nZVI/FeS2/H2O2 process within 60 min under the optimum conditions. ATZ degradation of B-nZVI/FeS2/H2O2 process was much higher than the sum of B-nZVI and FeS2/H2O2 processes. The presence of HCO3-, PO43- and F- exhibited significant negative effects on the ATZ degradation, whereas both Cu2+ and Ni2+ exhibited positive effects on that. Both citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) with lower concentration enhanced ATZ degradation rate, but significant suppression effects on that with higher concentration. The degradation of ATZ and 2,4-Dichlorophenol (2,4-DCP) could be simultaneously achieved in B-nZVI/FeS2/H2O2 process under certain conditions. High soluble Fe2+ induced an excellent decomposition of H2O2 by B-nZVI and FeS2. OH was dominant radical, and contributed to nearly 86% of the overall ATZ removal. A total of five intermediate products of ATZ were identified, and ATZ degradation was achieved via de-alkylation and hydroxylation processes. An enhanced reaction mechanism for ATZ degradation by B-nZVI/FeS2/H2O2 process was proposed, and B-nZVI/FeS2/H2O2 process exhibited an excellect catalytic performance within four successive runs.

8.
Chemosphere ; 263: 128287, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297231

RESUMO

The applicability of sludge biochar catalyst (SBC) coupling with ultrasound (US) irradiation for the simultaneous removal of Pb(II) and phenol was firstly investigated in this study. Results indicate that Pb(II) removal of SBC/US process was superior to that of SBC without US. The inhibitory order of the coexisting anions on Pb(II) removal was PO43- > HCO3- > NO3- > F- > SO42- > Cl-. Also, several coexisting metals ions inculding Cr(VI), Ni(II) and Cu(II) could be removed in a simultaneous manner with Pb(II). A high removal performance of Pb(II) by SBC/US process and its synergism with phenol oxidation had been successfully achieved. The simultaneous removal efficiencies of Pb(II) and phenol were high up to 95% within 60 min at optimum reaction conditions. Four kinds of Pb species inculding Pb0, PbCO3, PbO and Pb(OH)2 were formed during the reaction, whereas five kinds of transformation compounds of phenol such as 1,4-benzoquinone, acetic acid, formic acid, maleic acid and propionic acid were detected. Both HO and O2- contributed to the oxidation of phenol by SBC/US process, but HO was dominant radical. A reaction mechanism for the synergistic removal of Pb(II) and phenol by SBC/US process involving in four stages-namely adsorption, precipitation, reduction and Fenton-like oxidation processes was proposed. This study demonstrates that SBC/US process could be considered as a potential candidate for the remediation of real wastewaters containing Pb(II) and phenol.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Chumbo , Fenol , Fenóis/análise , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 384: 121385, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606253

RESUMO

Recently, clean-up of resistant organic compounds has attracted growing attention. In this study, a novel heterogeneous ultrasound-enhanced sludge biochar catalyst/persulfate (BC/PS/US) process was firstly developed for the degradation of bisphenol A (BPA) in water. The results revealed that BC/PS/US process could successfully achieve a positively synergistic effect between sonochemistry and catalytic chemistry on the degradation of BPA compared to its corresponding comparative process. Nearly 98% of BPA could be degraded within 80 min at optimum reaction conditions. The coexisting substances including Cl-, SO42- and NO3- had no obvious inhibition on the BPA degradation, whereas HCO3- and humic acid (HA) had significant inhibition effects on that. PS decomposition of BC/PS/US process was superior to that of BC/PS or US/PS process. Both SO4- and HO participated in the degradation of BPA, but SO4- was predominant radical in the BC/PS/US process. A possible pathway of BPA degradation was proposed, and the BPA molecule was attacked by SO4- and degraded into five kinds of intermediate products through hydroxylation and demethylation processes. This study helps to comprehend the application of sludge biochar catalyst as a persulfate activator for the degradation of organic compounds under ultrasound irradiation, and provides a new strategy in wastewater treatment.


Assuntos
Compostos Benzidrílicos/análise , Carvão Vegetal/química , Fenóis/análise , Esgotos/química , Compostos de Sódio/química , Sulfatos/química , Ondas Ultrassônicas , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Oxirredução , Águas Residuárias/química
10.
Sci Total Environ ; 666: 894-901, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30818213

RESUMO

Great amounts of nutrients discharged into the urbanized coastal areas, which are continuously subject to violently anthropogenic metal contamination, will result in eutrophication and hypoxic episode. In order to study the effects of dissolved oxygen (DO), salinity, nitrogen and phosphorus on the release of six metals including Zn, Pb, Cd, Cu, As and Cr from coastal sediments, a series of 60-days microcosm experiments consisting of sediments and seawater were conducted. Severe hypoxia could result in the enhanced peak values of Pb, Cd, Cu and Cr concentrations in the overlying water. A higher level of water salinity could elevate the peak value of As concentration in water column, and a higher level of nitrogen could increase the peak value of Zn concentration in water. The exchange fluxes demonstrated that the diffusion from the sediments was a dominant process during the first 10 days, However, a relative equilibrium of adsorption and precipitation in the sediment-water interface reached during the later periods. In addition, the bioavailability of the studied metals in sediments was elevated under severe hypoxia, or a high level of water salinity, or high levels of nitrogen and phosphorus. The results of linear regression analysis suggested that higher metal bioavailability in sediments could facilitate the metal release, but the process could be restrained by the higher aqueous phosphorus due to the precipitation of metal phosphates.

11.
Chemosphere ; 221: 511-518, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30660907

RESUMO

In this study, the feasibility of a novel Ca-Ag3PO4 composite with visible light irradiation for the phenanthrene (PHE) degradation and algae inactivation in artificial seawater was firstly investigated. The experimental findings revealed that Ag3PO4 phase was sucessfully formed on the Ca-based material, and the presence of Ca-based material could effectively keep Ag3PO4 particles stable. An excellent performance on PHE degradation or algae inactivation was observed from Ca-Ag3PO4 composite under visible light irradiation. The degradation of PHE or inactivation of algae not only could be efficiently achieved in the single mode, but also could be successfully achieved in the coexisting mode. Above 96% of PHE and algae were simultaneously removed within 12 h in the Ca-Ag3PO4/visible light system. It was further observed that the degradation of PHE and/or inactivation of algae increased with the increase of Ca-Ag3PO4 dosage. HO was the primary radical responsible for PHE degradation, whereas HO and Ag+ released from Ca-Ag3PO4 mainly contributed to the algae inactivation. A possible mechanism involving the catalytic removal of PHE and algae by Ca-Ag3PO4 under visible light irradiation was proposed. This study provides helpful guide for the simultaneous removal of various pollutants in real seawater.


Assuntos
Luz , Fenantrenos/química , Fosfatos/farmacologia , Alga Marinha/efeitos da radiação , Compostos de Prata/farmacologia , Cálcio , Catálise/efeitos dos fármacos , Catálise/efeitos da radiação , Água do Mar/química , Poluentes da Água/química , Poluentes da Água/efeitos da radiação , Purificação da Água/métodos
12.
Sci Total Environ ; 660: 541-549, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30641381

RESUMO

Herein, the application of a novel acid mine drainage-based nanoscale zero valent iron (AMD-based nZVI) for the remediation of nitrate and norfloxacin (NOR) was studied. Experimental results indicated that the catalytic reactivity of AMD-based nZVI toward nitrate reduction was superior to that of iron salt-based nanoscale zero valent iron (Iron salt-based nZVI). The presence of ultrasound irradiation could significantly enhance the reactivity toward both the nitrate reduction and NOR oxidation processes. The optimal efficiencies of nitrate and NOR by AMD-based nZVI/US process could be kept 96 and 94% within 120 min, respectively. Ammonia was identified as a major product in nitrate reduction process, while three oxidation products were observed in NOR degradation process. Both reduction reaction of nitrate from AMD-based nZVI and oxidation reaction of NOR from US-assisted Fenton system might be involved in AMD-based nZVI/US process. The AMD-based nZVI/US process showed a better performance on the removal of NOR compared with that of nitrate. The findings of the present work could be as a guide and show that AMD-based nZVI/US process is feasible for the remediation of both nitrate and NOR in real wastewater.


Assuntos
Antibacterianos/análise , Ferro/química , Nanopartículas Metálicas/química , Nitratos/química , Norfloxacino/análise , Poluentes Químicos da Água/análise , Oxirredução
13.
Chemosphere ; 215: 25-32, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30300808

RESUMO

Biodegradable plastics, as alternatives to conventional plastics, are increasingly used, but their interactions with organic pollutants are still unknown. In this study, the sorption and desorption behaviors on a type of biodegradable plastic-poly(butylene adipate co-terephtalate) (PBAT) were investigated, and at the same time two types of conventional plastics-polyethylene (PEc and PEv) and polystyrene (PS) were used for comparison. Phenanthrene (PHEN) was chosen as one of representative organic pollutants. Results indicated that the sorption and desorption capacities of PBAT were not only higher than those of the other types of microplastics, but also higher than those of carbonaceous geosorbents. The surface area normalized results illustrated that sorption and desorption of the microplastics were positively correlated with their abundance of rubbery subfraction. The sorption kinetic results showed that the sorption rates of PBAT and PEc were higher than PEv and PS. The effects of water chemistry factors including salinity, dissolved organic matter and Cu2+ ion on the sorption process displayed the same trend, but the degrees of influence on the four microplastics differed. The degrees of influence were mainly dependent on the abundance of rubbery subfraction for microplastics. These findings indicate that the biodegradable poly(butylene adipate co-terephtalate) microplastics are actually stronger vectors than the conventional microplastics, and crystallization characteristics of the microplastics have great influences on the vector effect.


Assuntos
Fenantrenos/química , Fenantrenos/isolamento & purificação , Plásticos/química , Poliésteres/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção
14.
Sci Total Environ ; 650(Pt 2): 2221-2230, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30292115

RESUMO

In-situ study on arsenic speciation and the release kinetics in marine sediments was scarce. In this study, the distributions of labile As and their speciation in coastal sediments of Daya Bay were obtained by separate diffusive gradients in thin films (DGT) probes. Results showed that the DGT-labile As(V) was the main speciation in surface sediments (from -20 to 0 mm) with a concentration range of 0.07-3.05 µg·L-1, while the labile As(III) was the main speciation in deep layers of sediments (from -100 to -20 mm). In coastal areas, mariculture farms was the most dominated contributor to As(V) contamination in surface sediments. Both the apparent diffusion flux estimation and the DGT induced flux in sediments (DIFS) simulation indicated that As(V) contamination in surface sediments of mariculture, harbor and petrochemical areas suffered the potential risk of As(V) release into the overlying water from sediments. DIFS modeling also found that the sediments of mariculture farms were the main sediment As pools. Linear regression analysis indicated that the mobility of As mainly attributed to the As(V) in sediments.

15.
Sci Total Environ ; 642: 505-515, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908509

RESUMO

Cr6+ and Pb2+ are both highly toxic pollutants and commonly co-exist in some industrial effluents and contaminated waters. In this study, simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero-valent iron (SSB-nZVI) was systematically investigated. It was well demonstrated that a porous structure was successfully formed on the SSB-nZVI when the starch was used as an additive. A synergistic effect on the adsorption and reduction over the SSB-nZVI was achieved, resulting in nearly 90 and 82% of Cr6+ and Pb2+ removal within 30 min, respectively. Cr6+ was reduced prior to Pb2+. A low pH could accelerate the corrosion of nZVI as well as phosphate leaching. When Malachite green was added as a coexisting organic pollutant, its effective removal was found due to the formation of a Fenton-like system. The SSB-nZVI could be run consecutively three times with a relatively satisfactory performance. Most of Cr6+ was converted into Cr2O3 and Cr(OH)3 on the SSB-nZVI surface, whereas most of Pb2+ species existed as Pb(OH)2 (or PbO). A possible reaction mechanism on the SSB-nZVI involved the adsorption, reduction and precipitation of both Cr6+ and Pb2+ over the particles. Present study sheds light on the insight of the fate and transport of Cr6+ and Pb2+ in aquatic environment, as well provides helpful guide for the remediation of coexistence of pollutants in real applications.


Assuntos
Cromo/análise , Ferro/análise , Chumbo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Carvão Vegetal , Cromo/química , Ferro/química , Chumbo/química , Esgotos , Poluentes Químicos da Água/química
16.
Environ Pollut ; 239: 698-705, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29715689

RESUMO

In this study, a novel biochar-supported zero valent iron (BC-nZVI) was synthesized through a green method. A high performance on the simultaneous removal of Cu2+ and bisphenol A (BPA) by a combination of BC-nZVI with persulfate (BC-nZVI/PS) system was successfully achieved. The simultaneous efficiencies of Cu2+ and BPA could reach 96 and 98% within 60 min, respectively. Both HO• and SO4•- were two major reactive species in BC-nZVI/PS system, and SO4•- was primary radical responsible for the degradation of BPA. Four kinds of Cu species, such as Cu(OH)2, CuO, Cu2O and Cu0 were generated via the adsorption and reduction of the BC-nZVI, whereas six kinds of products of BPA including p-isopropenyl phenol and 4-isopropylphenol were generated via the combined oxidation of SO4•- and HO•. The possible reaction mechanism for the simultaneous removal of Cu2+ and BPA by BC-nZVI/PS system contained a synergistic effect between the reduction of Cu2+ and the oxidation of BPA. This is the first report on the feasibility of the remediation of coexistence of heavy metal and organic compound in aquatic environment using the BC-nZVI/PS system.


Assuntos
Compostos Benzidrílicos/análise , Carvão Vegetal/química , Cobre/análise , Ferro/química , Fenóis/análise , Poluentes Químicos da Água/análise , Adsorção , Compostos Benzidrílicos/química , Cátions Bivalentes , Cobre/química , Oxirredução , Fenóis/química , Poluentes Químicos da Água/química
17.
Mar Pollut Bull ; 128: 132-139, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29571356

RESUMO

Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay (DYB) were conducted in this study. The results revealed that the concentration of Cr, Cu, Zn, As, Cd and Pb in sediments were in the range of 36.38-90.33, 9.54-61.32, 33.54-207.33, 7.80-18.43, 0.13-0.43 and 15.89-30.01 mg kg-1, respectively, with bioavailable fractions of 13.29, 54.16, 47.60, 32.74, 68.14, 26.59%, respectively. A modified potential ecological risk index (MRI) was used for the ecological risk assessment, with ecological risk contribution ratios of 75.73, 14.29, 5.47, 1.74, 1.57 and 1.21% for Cd, As, Cu, Cr, Pb and Zn, respectively. The main contaminants were Cd and As, with their ecological risks "High" and "Moderate" levels, and their enrichment degrees "Moderately Severe" and "Moderate", respectively. The multivariate statistical analysis suggested that the various anthropogenic activities along the bay might contribute mainly to the heavy metals contamination in DYB.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Fracionamento Químico , China , Atividades Humanas , Análise Multivariada , Medição de Risco
18.
J Hazard Mater ; 343: 140-148, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28946134

RESUMO

The negative impacts of residual antibiotics in the environment on ecosystem and human health are big concerns. However, little information is available on the antibiotic bioaccumulation in aquaculture farms. In this study, the bioaccumulative potentials of 21 antibiotics in the plasma, bile, liver and muscle of cultured fish from a typical aquaculture area were systematically investigated. RESULTS: indicated that antibiotic distribution in the cultured fish was mainly influenced by species and specific substances. The mean values of log bioaccumulation factors (Log BAFs) for the detected antibiotics were in the range of 0.43-3.70, 0.36-4.75, -0.31-4.48, and 0.23-4.33 in the fish plasma, bile, liver and muscle tissues, respectively. For grass carp, both ciprofloxacin and enrofloxacin showed high transportability from the plasma to the muscle and liver. The correlations of various antibiotic concentrations between the plasma and the other three tissues indicated that the concentrations of ciprofloxacin and enrofloxacin in the fish tissues could be predicted by their concentrations in the plasma. Based on the calculated hazard quotients, human health risk evaluation of antibiotic exposure by fish consumption indicated that the consumption of these cultured fish posed low risks to human health.


Assuntos
Antibacterianos/análise , Carpas , Poluentes Químicos da Água/análise , Ração Animal/análise , Animais , Antibacterianos/sangue , Antibacterianos/metabolismo , Aquicultura , Bile/química , Bile/metabolismo , Carpas/sangue , Carpas/metabolismo , Galinhas , Monitoramento Ambiental , Fezes/química , Contaminação de Alimentos/análise , Gansos , Sedimentos Geológicos/análise , Humanos , Fígado/química , Fígado/metabolismo , Esterco , Músculos/química , Músculos/metabolismo , Lagoas/análise , Medição de Risco , Suínos , Distribuição Tecidual , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/metabolismo
19.
J Hazard Mater ; 327: 108-115, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28049066

RESUMO

In this study, the application of FeS2/SiO2 microspheres as a catalyst to activate H2O2 for the degradation of ciprofloxacin (CIP) was systematically investigated. Results demonstrated that the presence of SiO2 microspheres on the surface of FeS2 could effectively make the reaction of aqueous Fe2+ and H2O2 smoothly continuous by controlling the release of aqueous Fe2+ from FeS2. Nearly 100% of CIP was degraded after 60min under the optimum conditions. A superior performance on the CIP degradation and high reusability of the catalyst was obtained in FeS2/SiO2 microspheres activated H2O2 system. A low concentration of ethylene diamine tetraacetie acid (EDTA) did positively affect the degradation rate of CIP. A synergetic effect between adsorption and oxidation processes contributed to the significant enhancement of CIP degradation. Seven oxidation intermediates were identified during the CIP degradation process, and the direct HO oxidation proved to be a main CIP degradation pathway. For degradation pathway of CIP, oxidation of piperazine ring would be its first step, followed by cleavage of the heterocyclic ring. Subsequently, the substitution, hydroxylation and decarboxylation processes occurred. This is the first report on the feasibility of FeS2/SiO2 microspheres activated H2O2 system for the enhanced degradation of CIP.


Assuntos
Ciprofloxacina/química , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Ferro/química , Dióxido de Silício/química , Catálise , Descarboxilação , Ácido Edético , Hidroxilação , Cinética , Microesferas , Reciclagem , Poluentes Químicos da Água
20.
Arch Environ Contam Toxicol ; 71(3): 359-64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27421724

RESUMO

Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...