Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(3): 2612-2619, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31948230

RESUMO

RNA modification, such as N1-methyladenosine (m1A), affects the secondary structure of RNA and its ability to recognize specific reader proteins. Methods for detecting site-specific m1A are in demand. We report here a ligation-assisted differentiation approach for quantitative detection of m1A in mRNA with single-base resolution. The methyl group in m1A disrupts the Watson-Crick base pairing with uridine, resulting in a lower ligation efficiency of certain ligases and lower amounts of ligation products. Detection of the ligation products using quantitative real-time PCR provided site-specific evaluation of m1A. We first screened appropriate ligase and found that T3 DNA ligase offered the best discrimination between m1A and adenosine. We successfully detected and quantified m1A at position 1674 of bromodomain containing 2 (BRD2) mRNA from HEK293T cells. In lung carcinoma tissues, the level of m1A at position 1674 of BRD2 mRNA was significantly decreased compared to the tumor-adjacent normal tissues, suggesting that site-specific m1A may be involved in carcinogenesis.

2.
Anal Chim Acta ; 1098: 56-65, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31948587

RESUMO

RNA molecules carry diverse modifications that exert important influences in many cellular processes. In addition to the single modification occurring in either nucleobase or 2' hydroxyl of ribose in RNA, some dual modifications occur in both the nucleobase and 2' hydroxyl of ribose in RNA. 2'-O-methyl-5-methylcytidine (m5Cm), the dual modifications of cytidine, was first discovered from the tRNA of archaea. Recent studies identified that 2'-O-methyl-5-hydroxymethylcytidine (hm5Cm) and 2'-O-methyl-5-formylcytidine (f5Cm) were present in the anticodon of cytoplasmic tRNA of mammals. Similar to the series of single modification of cytidines of 5-methylcytosine (m5C), 5-hydroxymethylcytidine (hm5C), 5-formylcytidine (f5C), and 5-carboxylcytidine (ca5C) in nucleic acids, the dual modifications of m5Cm, hm5Cm, f5Cm and 2'-O-methyl-5-carboxylcytidine (ca5Cm) may also constitute the series of cytidine modifications in mammals. However, it is normally challenging to detect these modifications because of their low endogenous levels. Here, we established a method by chemical labeling-assisted liquid chromatography - electrospray ionization - tandem mass spectrometry (LC-ESI-MS/MS) analysis for the sensitive and simultaneous determination of all these four cytidine dual modifications, i.e., m5Cm, hm5Cm, f5Cm and ca5Cm. Three different labeling reagents (2-bromo-1-(3,4-dimeth oxyphenyl)-ethanone, BDMOPE; 2-bromo-1-(4-methoxyphenyl)-ethanone, BMOPE; 2-bromo-1-(4-diethylaminophenyl)-ethanone, BDEPE) were used for the chemical labeling. The results showed that the detection sensitivities of m5Cm, hm5Cm, f5Cm and ca5Cm increased up to 462 folds after chemical labeling. With the developed method, we achieved the simultaneous detection of m5Cm, hm5Cm and f5Cm in RNA of mammals. In addition, we found these cytidine dual modifications mainly exist in small RNA (<200 nt) and barely detected in other types of RNA. Moreover, we found that the levels of m5Cm in RNA of human lung carcinoma tissues significantly increased, while hm5Cm and f5Cm significantly decreased compared to tumor adjacent normal tissues. The significant changes of m5Cm, hm5Cm and f5Cm levels may serve as indicator for the detection and prognosis of lung cancer.

3.
Anal Chem ; 92(2): 2301-2309, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31845797

RESUMO

Ribonucleotide analogues and their related phosphorylated metabolites play critical roles in tumor metabolism. However, determination of the endogenous ribonucleotides from the complex biological matrix is still a challenge due to their high structural similarity and high polarity that will lead to the low retention and low detection sensitivities by liquid chromatogram mass spectrometry analysis. In this study, we developed the diazo reagent labeling strategy with mass spectrometry analysis for sensitive determination of ribonucleotides in the living organism. A pair of light and heavy stable isotope labeling reagents, 2-(diazomethyl)-N-methyl-N-phenyl-benzamide (2-DMBA) and d5-2-(diazomethyl)-N-methyl-N-phenyl-benzamide (d5-2-DMBA), were synthesized to label ribonucleotides. 2-DMBA showed high specificity and high efficiency for the labeling of ribonucleotides. Our results demonstrated that the detection sensitivities of 12 ribonucleotides increased by 17-174-fold upon 2-DMBA labeling. The obtained limits of detection (LODs) of ribonucleotides ranged from 0.07 fmol to 0.41 fmol. Using this method, we achieved the sensitive and accurate detection of ribonucleotides from only a few cells (8 cells). To the best of our knowledge, this is the highest detection sensitivity for ribonucleotides ever reported. In addition, we found that the contents of almost all of these ribonucleotides were significantly increased in human breast carcinoma tissues compared to tumor-adjacent normal tissues, suggesting that endogenous ribonucleotides may play certain functional roles in the regulation of cancer development and formation. This method also can be potentially applied in the analysis of phosphorylated compounds.

4.
Chem Res Toxicol ; 32(10): 2078-2085, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433169

RESUMO

Hexavalent chromium [Cr(VI)] compounds that are generated during industrial processes are widely recognized as highly toxic and carcinogenic. It has been reported that exposure to Cr(VI) can produce some chromium intermediates and reactive oxygen species (ROS), which causes DNA damages, genetic instability, and eventually leads to the elevated risk of various diseases including cancers. In recent years, it has been proposed that epigenetic-based mechanisms may involve in the toxic heavy metals-induced cytotoxicity and mutagenicity besides the genetic-based mechanisms. However, whether Cr(VI) could impose its cytotoxic effect through dysregulating the RNA epigenetic modifications remains poorly defined. We systematically investigated the effects of Cr(VI) exposure on 14 kinds of modifications in mRNA of HEK293T cells. We found that Cr(VI) exposure can induce an obvious decrease of inosine in mRNA. In addition, we observed that the expression level of the adenosine deaminase acting on RNA (ADAR1) was significantly decreased upon Cr(VI) exposure, which could be responsible for the induced decrease of inosine in mRNA by Cr(VI) exposure. Together, we demonstrated that Cr(VI) could interrupt A-to-I RNA editing in mRNA, which may eventually lead to the cytotoxicity and mutagenicity.

5.
ACS Chem Biol ; 14(7): 1418-1425, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31188562

RESUMO

RNA contains diverse modifications that exert important influences in a variety of cellular processes. So far more than 150 modifications have been identified in various RNA species, mainly in rRNA and tRNA. Recent research advances in RNA modifications have been sparked by the discovery of dynamic and reversible modifications in mRNA. Moving beyond the abundant tRNA and rRNA to mRNA is opening new directions in understanding RNA modification-mediated regulation of gene expression. Recently, it was reported that N3-methylcytidine (m3C) existed in mRNA of mammalian cells, and methyltransferase-like 8 (METTL8) was identified to be the writer enzyme of m3C. However, little is known about the eraser enzyme of m3C in mRNA. In the current study, we found that the AlkB homologue 1 (ALKBH1) was capable of demethylating m3C in mRNA of mammalian cells in vitro. Overexpression and knockdown of ALKBH1 in cultured human cells can induce decrease and increase of the level of m3C in mRNA, respectively, revealing the eraser enzyme property of ALKBH1 on m3C in mRNA. In addition, we observed significant decrease of the level of m3C in mRNA in hepatocellular carcinoma (HCC) tissues compared to tumor-adjacent normal tissues, which could be attributed to the increased expression of ALKBH1 as well as the decreased expression of METTL8 in HCC tissues. These results indicated that m3C in mRNA may play certain roles in tumorigenesis. Our study shed light on understanding the demethylation of m3C in mRNA.


Assuntos
Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Citidina/análogos & derivados , RNA Mensageiro/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Citidina/metabolismo , Desmetilação , Células HEK293 , Humanos , Neoplasias Hepáticas/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA