Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Mais filtros

Base de dados
Intervalo de ano de publicação
Clin Pharmacol Ther ; 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868917


Drug safety is a severe clinical pharmacology and toxicology problem that has caused immense medical and social burdens every year. Regretfully, there still misses a reproducible method to assess drug safety systematically and quantitatively. In this study, we developed an advanced machine learning model for de novo drug safety assessment by solving the multilayer drug-gene-adverse drug reaction (ADR) interaction network. For the first time, the drug safety was assessed in a broad landscape of 1,156 distinct ADRs. We also designed a parameter ToxicityScore to quantify the overall drug safety. Moreover, we determined association strength for every 3,807,631 gene-ADR interactions, which clues mechanistic exploration of ADRs. For convenience, we deployed the model as a web service ADRAlert-gene at In summary, this study offers insights into prioritizing safe drug therapy. It helps to reduce the attrition rate of new drug discovery by providing reliable ADR profile in early pre-clinical stage.