Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; : 114784, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642665

RESUMO

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.

2.
PeerJ ; 11: e14929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846458

RESUMO

Background: Following spinal cord injury (SCI), a large number of peripheral monocytes infiltrate into the lesion area and differentiate into macrophages (Mø). These monocyte-derived Mø are very difficult to distinguish from the local activated microglia (MG). Therefore, the term Mø/MG are often used to define the infiltrated Mø and/or activated MG. It has been recognized that pro-inflammatory M1-type Mø/MG play "bad" roles in the SCI pathology. Our recent research showed that local M1 cells are mainly CD45-/lowCD68+CD11b+ in the subacute stage of SCI. Thus, we speculated that the M1 cells in injured spinal cords mainly derived from MG rather than infiltrating Mø. So far, their dynamics following SCI are not yet entirely clear. Methods: Female C57BL/6 mice were used to establish SCI model, using an Infinite Horizon impactor with a 1.3 mm diameter rod and a 50 Kdynes force. Sham-operated (sham) mice only underwent laminectomy without contusion. Flow cytometry and immunohistofluorescence were combined to analyze the dynamic changes of polarized Mø and MG in the acute (1 day), subacute (3, 7 and 14 days) and chronic (21 and 28 days) phases of SCI. Results: The total Mø/MG gradually increased and peaked at 7 days post-injury (dpi), and maintained at high levels 14, 21 and 28 dpi. Most of the Mø/MG were activated, and the Mø increased significantly at 1 and 3 dpi. However, with the pathological process, activated MG increased nearly to 90% at 7, 14, 21 and 28 dpi. Both M1 and M2 Mø were increased significantly at 1 and 3 dpi. However, they decreased to very low levels from 7 to 28 dpi. On the contrary, the M2-type MG decreased significantly following SCI and maintained at a low level during the pathological process.


Assuntos
Microglia , Traumatismos da Medula Espinal , Feminino , Camundongos , Animais , Microglia/patologia , Camundongos Endogâmicos C57BL , Macrófagos/patologia , Traumatismos da Medula Espinal/patologia
3.
Gene ; 823: 146338, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35245640

RESUMO

We have previously reported that morroniside promoted motor activity after spinal cord injury (SCI) in rats. However, the mechanism by which morroniside induces recovery of injured spinal cord (SC) remains unknown. In the current study, RNA sequencing (RNA-seq) was employed to evaluate changes of gene expressions at the transcriptional level of the injured spinal cords in morroniside-administrated rats. Principal component analysis, analysis of enriched Gene Ontology (GO), enrichment analyses Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and other bioinformatics analyses were executed to distinguish differentially expressed genes (DEGs). The results of RNA-seq confirmed the anti-inflammatory and anti-apoptotic effects of morroniside on injured SC tissues, and provided the basis for additional research of the mechanisms involving the protective effects of morroniside on SCI.


Assuntos
Anti-Inflamatórios/administração & dosagem , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Glicosídeos/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Glicosídeos/farmacologia , Análise de Componente Principal , Distribuição Aleatória , Ratos , Análise de Sequência de RNA , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/genética
4.
Neurochem Int ; 148: 105105, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147513

RESUMO

Spinal cord injury (SCI) is a disabling condition that often leads to permanent neurological deficits without an effective treatment. Reactive oxygen species (ROS) produced during oxidative stress play a vital role in the pathogenesis following SCI. The antioxidant morroniside is the main active component of the Chinese medicine Cornus officinalis. In recent years, it has been reported that morroniside has therapeutic effects on damage to multiple organs mediated by oxidative damage, but the effect of morroniside on SCI has not been reported. The purpose of this study was therefore to assess the therapeutic effect of morroniside on SCI, and to identify its underlying mechanism by direct intragastric administration immediately after SCI. Our study showed that morroniside treatment improved the functional recovery of rats following SCI. This behavioral improvement was associated with the higher survival in neurons and oligodendrocytes following SCI, which increased the capacity of injured spinal cord (SC) to form myelin and repair tissue, eventually contributing to improved neurological outcome. Furthermore, our study found that oxygen free radicals increased and antioxidant enzyme activity decreased in the injured SC. Interestingly, morroniside treatment decreased oxygen free radical levels and increased antioxidant enzyme activities. Together, our results suggested that morroniside may be an effective treatment for improving outcomes following SCI, and that its antioxidant activity may be one of the mechanisms by which morroniside exerts neuroprotective effects on SCI.


Assuntos
Glicosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cornus/química , Feminino , Locomoção , Neurônios/patologia , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia
5.
Neural Regen Res ; 16(9): 1836-1847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33510091

RESUMO

Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury. The results showed that: (1) VX-765 inhibited spinal cord injury-induced caspase-1 activation and interleukin-1ß and interleukin-18 secretion. (2) After spinal cord injury, an increase in M1 cells mainly came from local microglia rather than infiltrating macrophages. (3) Pro-inflammatory Th1Th17 cells were predominant in the Th subsets. VX-765 suppressed total macrophage infiltration, M1 macrophages/microglia, Th1 and Th1Th17 subset differentiation, and cytotoxic T cells activation; increased M2 microglia; and promoted Th2 and Treg differentiation. (4) VX-765 reduced the fibrotic area, promoted white matter myelination, alleviated motor neuron injury, and improved functional recovery. These findings suggest that VX-765 can reduce neuroinflammation and improve nerve function recovery after spinal cord injury by inhibiting caspase-1/interleukin-1ß/interleukin-18. This may be a potential strategy for treating spinal cord injury. This study was approved by the Animal Care Ethics Committee of Bengbu Medical College (approval No. 2017-037) on February 23, 2017.

6.
Genomics ; 112(6): 5086-5100, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919018

RESUMO

MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.


Assuntos
Exossomos/genética , MicroRNAs/metabolismo , Traumatismos da Medula Espinal/genética , Animais , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
7.
J Neuroinflammation ; 17(1): 255, 2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32861243

RESUMO

BACKGROUND: After spinal cord injury (SCI), destructive immune cell subsets are dominant in the local microenvironment, which are the important mechanism of injury. Studies have shown that inflammasomes play an important role in the inflammation following SCI, and apoptosis-associated speck-like protein containing a card (ASC) is the adaptor protein shared by inflammasomes. Therefore, we speculated that inhibiting ASC may improve the local microenvironment of injured spinal cord. Here, CRID3, a blocker of ASC oligomerization, was used to study its effect on the local microenvironment and the possible role in neuroprotection following SCI. METHODS: Murine SCI model was created using an Infinite Horizon impactor at T9 vertebral level with a force of 50 kdynes and CRID3 (50 mg/kg) was intraperitoneally injected following injury. ASC and its downstream molecules in inflammasome signaling pathway were measured by western blot. The immune cell subsets were detected by immunohistofluorescence (IHF) and flow cytometry (FCM). The spinal cord fibrosis area, neuron survival, myelin preservation, and functional recovery were assessed. RESULTS: Following SCI, CRID3 administration inhibited inflammasome-related ASC and caspase-1, IL-1ß, and IL-18 activation, which consequently suppressed M1 microglia, Th1 and Th1Th17 differentiation, and increased M2 microglia and Th2 differentiation. Accordingly, the improved histology and behavior have also been found. CONCLUSIONS: CRID3 may ameliorate murine SCI by inhibiting inflammasome activation, reducing proinflammatory factor production, restoring immune cell subset balance, and improving local immune microenvironment, and early administration may be a promising therapeutic strategy for SCI.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Furanos/farmacologia , Indenos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Caspase 1/metabolismo , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Furanos/uso terapêutico , Indenos/uso terapêutico , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Modelos Animais , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/imunologia , Traumatismos da Medula Espinal/imunologia , Sulfonamidas/uso terapêutico
8.
Mol Med Rep ; 22(1): 33-42, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32377730

RESUMO

Previous studies have shown that caspase-1 plays an important role in the acute inflammatory response of spinal cord injury (SCI). VX­765, a novel and irreversible caspase­1 inhibitor, has been reported to effectively intervene in inflammation. However, the effect of VX­765 on genome­wide transcription in acutely injured spinal cords remains unknown. Therefore, in the present study, RNA­sequencing (RNA­Seq) was used to analyze the effect of VX­765 on the local expression of gene transcription 8 h following injury. The differentially expressed genes (DEGs) underwent enrichment analysis of functions and pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, respectively. Parallel analysis of western blot confirmed that VX­765 can effectively inhibit the expression and activation of caspase­1. RNA­Seq showed that VX­765 treatment resulted in 1,137 upregulated and 1,762 downregulated DEGs. These downregulated DEGs and their associated signaling pathways, such as focal adhesion, cytokine­cytokine receptor interaction, leukocyte transendothelial migration, extracellular matrix­receptor interaction, phosphatidylinositol 3­kinase­protein kinase B, Rap1 and hypoxia inducible factor­1 signaling pathway, are mainly associated with inflammatory response, local hypoxia, macrophage differentiation, adhesion migration and apoptosis of local cells. This suggests that the application of VX­765 in the acute phase can improve the local microenvironment of SCI by inhibiting caspase­1. However, whether VX­765 can be used as a therapeutic drug for SCI requires further exploration. The sequence data have been deposited into the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/PRJNA548970).


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , para-Aminobenzoatos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Caspase 1/metabolismo , Inibidores de Caspase/uso terapêutico , Dipeptídeos/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , para-Aminobenzoatos/uso terapêutico
9.
Genomics ; 112(2): 2092-2105, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830526

RESUMO

MicroRNAs (miRNAs) are involved in a series of pathology of spinal cord injury (SCI). Although, locally expressed miRNAs have advantages in studying the pathological mechanism, they cannot be used as biomarkers. The "free circulation" miRNAs can be used as biomarkers, but they have low concentration and poor stability in body fluids. Exosomal miRNAs in body fluids have many advantages comparing with free miRNAs. Therefore, we hypothesized that the specific miRNAs in the central nervous system might be transported to the peripheral circulation and concentrated in exosomes after injury. Using next-generation sequencing, miRNA profiles in serum exosomes of sham and subactue SCI rats were analyzed. The results showed that SCI can lead to changes of serum exosomal miRNAs. These changed miRNAs and their associated signaling pathways may explain the pathological mechanism of suacute SCI. More importantly, we found some valuable serum exosomal miRNAs for diagnosis and prognosis of SCI.


Assuntos
MicroRNA Circulante/genética , Exossomos/genética , Traumatismos da Medula Espinal/genética , Transcriptoma , Animais , Biomarcadores/sangue , MicroRNA Circulante/sangue , Exossomos/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/sangue
10.
Front Pharmacol ; 10: 1412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849666

RESUMO

Given the limitations of existing therapeutic agents for treatment of postmenopausal osteoporosis, there still remains a need for more options with both efficacy and less adverse effects. Cistanche deserticola Y. C. Ma is known as a popular tonic herb traditionally used to treatment deficiency of kidney energy including muscle weakness in minority area of Asian counties. Based on the theory of "kidney dominate bone," an ovariectomized (OVX) rat model of postmenopausal osteoporosis was used to evaluate the therapeutic effect of C. deserticola extract (CDE) on bone loss. Forty eight female Sprague-Dawley rats, aged about 12 weeks, were randomly assigned into six groups including sham group orally administrated with 0.5% carboxymethyl cellulose sodium (CMC-Na) (sham), positive group treated with 1 mg/kg of estradiol valerate (EV), low, moderate, and high dosage groups orally administrated with 200, 400, and 800 mg/kg/day of CDE, respectively. After 3 months of continuous intervention, CDE exhibited significant anti-osteoporotic activity evidenced by the enhanced total bone mineral density, ameliorated bone microarchitecture; increased alkaline phosphatase activity; decreased deoxypyridinoline, cathepsin K, tartrate-resistant acid phosphatase, and malondialdehyde levels; whereas the body, uterus, and vagina weights in OVX rats were not influenced by CDE intervention. In addition, a seemed contradictory phenomenon on levels of calcium and phosphorus between OVX and sham rats were observed and elucidated. Mechanistically, CDE significantly down-regulated the levels of TRAF6, RANKL, RANK, NF-κB, IKKß, NFAT2, and up-regulated the phosphatidylinositol 3-kinase (PI3K), AKT, osteoprotegerin, and c-Fos expressions, which implied CDE could suppress RANKL/RANK-induced activation of downstream NF-κB and PI3K/AKT pathways, and ultimately, preventing activity of the key osteoclastogenic proteins NFAT2 and c-Fos. All of the data suggested CDE possessed potential anti-osteoporotic activity and this effect was, at least in part, involved in modulation of RANKL/RANK/TRAF6-mediated NF-κB and PI3K/AKT signaling as well as c-Fos and NFAT2 levels. Therefore, CDE may represent a useful promising remedy candidate for treatment of postmenopausal osteoporosis.

13.
Genomics ; 111(4): 986-996, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31307632

RESUMO

The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.


Assuntos
Ativação de Macrófagos/genética , Macrófagos/imunologia , Transcriptoma , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Transdução de Sinais
15.
Neural Regen Res ; 14(3): 542-552, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30539825

RESUMO

In traumatic brain injury, absent in melanoma 2 (AIM2) has been demonstrated to be involved in pyroptotic neuronal cell death. Although the pathophysiological mechanism of spinal cord injury is similar to that of brain injury, the expression and cellular localization of AIM2 after spinal cord injury is still not very clear. In the present study, we used a rat model of T9 spinal cord contusive injury, produced using the weight drop method. The rats were randomly divided into 1-hour, 6-hour, 1-day, 3-day and 6-day (post-injury time points) groups. Sham-operated rats only received laminectomy at T9 without contusive injury. Western blot assay revealed that the expression levels of AIM2 were not significantly different among the 1-hour, 6-hour and 1-day groups. The expression levels of AIM2 were markedly higher in the 1-hour, 6-hour and 1-day groups compared with the sham, 3-day and 7-day groups. Double immunofluorescence staining demonstrated that AIM2 was expressed by NeuN+ (neurons), GFAP+ (astrocytes), CNPase+ (oligodendrocytes) and CD11b+ (microglia) cells in the sham-operated spinal cord. In rats with spinal cord injury, AIM2 was also found in CD45+ (leukocytes) and CD68+ (activated microglia/macrophages) cells in the spinal cord at all time points. These findings indicate that AIM2 is mainly expressed in neurons, astrocytes, microglia and oligodendrocytes in the normal spinal cord, and that after spinal cord injury, its expression increases because of the infiltration of leukocytes and the activation of astrocytes and microglia/macrophages.

16.
J Neurosci Res ; 96(7): 1265-1276, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29377294

RESUMO

Ceruloplasmin (Cp), an enzyme containing six copper atoms, has important roles in iron homeostasis and antioxidant defense. After spinal cord injury (SCI), the cellular components in the local microenvironment are very complex and include functional changes of resident cells and the infiltration of leukocytes. It has been confirmed that Cp is elevated primarily in astrocytes and to a lesser extent in macrophages following SCI in mice. However, its expression in other cell types is still not very clear. In this manuscript, we provide a sensible extension of these findings by examining this system within a female Sprague-Dawley rat model and expanding the scope of inquiry to include additional cell types. Quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that the Cp mRNA and protein in SCI tissue homogenates were quite consistent with prior publications. However, we observed that Cp was expressed not only in GFAP+ astrocytes (consistent with prior reports) but also in CD11b+ microglia, CNPase+ oligodendrocytes, NeuN+ neurons, CD45+ leukocytes, and CD68+ activated microglia/macrophages. Quantitative analysis proved that infiltrated leukocytes, activated microglia/macrophages, and astrocytes should be the major sources of increased Cp.


Assuntos
Astrócitos/enzimologia , Ceruloplasmina/biossíntese , Microglia/enzimologia , Traumatismos da Medula Espinal/patologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos Nucleares/metabolismo , Astrócitos/patologia , Antígeno CD11b/metabolismo , Ceruloplasmina/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/enzimologia , Leucócitos/patologia , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Neurônios/fisiologia , Oligodendroglia/enzimologia , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/induzido quimicamente
17.
J Histochem Cytochem ; 66(3): 175-187, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300519

RESUMO

Interferon-induced transmembrane protein 1 (IFITM1) is a member of the IFITM family that is associated with some acute-phase cytokine-stimulated response. Recently, we demonstrated that IFITM1 was significantly upregulated in the injured spinal cords at the mRNA level. However, its expression and cellular localization at the protein level is still unclear. Here, a rat model of spinal cord injury (SCI) was performed to investigate the spatio-temporal expression of IFITM1 after SCI. IFITM1 mRNA and protein were assessed by quantitative reverse transcription-PCR and western blot, respectively. IHC was used to identify its cellular localization. We revealed that IFITM1 could be found in sham-opened spinal cords and gradually increased after SCI. It reached peak at 7 and 14 days postinjury (dpi) and still maintained at a relatively higher level at 28 dpi. IHC showed that IFITM1 expressed in GFAP+ and APC+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells, and its expression in CD45+, CD68+, and GFAP+ cells was increased significantly. These results demonstrate that IFITM1 is mainly expressed in astrocytes and oligodendroglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia, and astrocytes after SCI.


Assuntos
Antígenos de Diferenciação/análise , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Regulação para Cima , Animais , Antígenos de Diferenciação/genética , Astrócitos/metabolismo , Astrócitos/patologia , Feminino , Leucócitos/metabolismo , Leucócitos/patologia , Microglia/metabolismo , Microglia/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética
18.
Neurochem Int ; 113: 23-33, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196144

RESUMO

Hexokinase-3 (HK3) is a member of hexokinase family, which can catalyze the first step of glucose metabolism. It can increase ATP levels, reduce the production of reactive oxygen species, increase mitochondrial biogenesis, protect mitochondrial membrane potential and play an antioxidant role. However, the change of its expression in spinal cord after injury is still unknown. In this study, we investigated the spatio-temporal expression of HK3 in the spinal cords by using a spinal cord injury (SCI) model in adult female Sprague-Dawley rats. Quantitative reverse transcription-PCR and western blot analysis revealed that HK3 could be detected in sham-opened spinal cords. After SCI, it gradually increased, reached a peak at 7 days post-injury (dpi), and then gradually decreased with the prolonging of injury time, but still maintained at a higher level for up to 28 dpi (the longest time evaluated in this study). Immunofluorescence staining showed that HK3 was found in GFAP+, ß-tubulin III+ and IBA-1+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells. These results demonstrate that HK3 is mainly expressed in astrocytes, neurons and microglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia/macrophages and astrocytes after SCI. These data suggest that HK3 may be involved in the pathologic process of SCI by promoting glucose metabolism.


Assuntos
Regulação Enzimológica da Expressão Gênica , Hexoquinase/biossíntese , Traumatismos da Medula Espinal/enzimologia , Animais , Feminino , Hexoquinase/genética , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/lesões , Fatores de Tempo
19.
Artigo em Chinês | MEDLINE | ID: mdl-26510360

RESUMO

OBJECTIVE: To clone, express and purify Schistosoma japonicum fructose-1, 6-bisphosphate aldolase (SjFBPA) in E. coli and observe its expression in different developmental stages of S. japonicum. METHODS: FBPA gene was amplified from S. japonicum adult worm cDNA by using PCR. The amplified product was recombined into pET28a plasmid, and inducibly expressed with IPTG in E. coli BL21. SDS-PAGE and Western blotting were employed to analyze and identify the recombinant protein SjFBPA (rSjFBPA). Then, rSjFBPA was purified by chromatographic purification and its purity was analyzed by SDS- PAGE. The protein concentration of rSjFBPA purified was measured by the BCA method. Furthermore, SjFBPA mRNA was ana- lyzed in different developmental stages of S. japonicum by RT-PCR. RESULTS: SjFBPA was successfully amplified by using PCR and identified by restriction enzyme digestion and sequencing. The Western blotting analysis confirmed that the recombinant pro- tein could specifically reactive to the anti-His-tag monoclonal antibody. The concentration of the purified recombinant protein was about 4 mg/ml. The result of RT-PCR showed that SjFBPA mRNA was expressed in cercaria, schistosomulum, adult worm and egg of S. japonicum. CONCLUSION: SjFBPA is successfully recombined and expressed in a prokaryotic system, and SjFBPA mRNA is expressed in cercaria, schistosomulum, adult worm and egg of S. japonicum.


Assuntos
Frutose-Bifosfato Aldolase/genética , Proteínas Recombinantes/biossíntese , Schistosoma japonicum/enzimologia , Animais , Escherichia coli/genética , Frutose-Bifosfato Aldolase/biossíntese , Frutose-Bifosfato Aldolase/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/isolamento & purificação , Schistosoma japonicum/crescimento & desenvolvimento
20.
Zhonghua Wei Chang Wai Ke Za Zhi ; 10(1): 67-9, 2007 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-17253179

RESUMO

OBJECTIVE: To study the value of screening hereditary nonpolyposis colorectal cancer (HNPCC) kindreds by detecting the expressions of hMLH1/hMSH2 with tissue microarray. METHODS: A tissue microarray with 22 colorectal cancers from HNPCC families and 15 sporadic colorectal cancers was established, and the expressions of hMLH1/hMSH2 were detected by immunohistochemistry (IHC). RESULTS: The expressions of hMLH1 or hMSH2 were negative in 15 of 22 HNPCC and 1 of 15 sporadic colorectal cancers in routine IHC. The expressions of hMLH1 or hMSH2 were negative in 17 of 22 HNPCC and 2 of 15 sporadic colorectal cancers in tissue microarray. The examination of hMSH2 expression yielded same results between routine IHC and tissue microarray. There were no difference on the hMLH1 expressions between routine IHC and tissue microarray. CONCLUSION: Tissue microarray is a high-throughput way to detect the expressions of hMLH1/hMSH2 and is applicable to screen HNPCC kindreds.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/genética , Análise Serial de Proteínas/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Metilação de DNA , Feminino , Frequência do Gene , Testes Genéticos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...