Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 741046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869327

RESUMO

The incidence of degenerative spinal diseases, such as cervical spondylosis and thoracic and lumbar disc herniation, is increasing. These health problems have adversely affected human life and work. Surgical intervention is effective when intervertebral disc degeneration (IDD) causes nerve compression and/or severely limits daily activity. Early IDD patients generally do not require surgery. However, there is no effective method of impeding IDD progression. Thus, novel approaches to alleviating IDD deterioration are urgently required. Cystathionine-γ-lyase (CSE) and E-selectin (CD62E) are vital factors regulating vascular function and inflammation. However, their effects on IDD and vascular invasion in intervertebral discs (IVDs) are pending further exploration. Here, bioinformatics and human nucleus pulposus (NP) tissues analyses revealed that CSE was significantly downregulated and CD62E was upregulated in the NP tissues of IDD patients. We demonstrated that CSE overexpression, CD62E downregulation, and NF-κB (P65) inhibition mitigate inflammation and recover metabolic function in NP cells. Similarly, CSE attenuated vascular invasion induced by inflammatory irritation. Using a rat IDD model, we showed that CSE improved degeneration, inflammation, and microvascular invasion in NP tissue, whereas CD62E had the opposite effect. Taken together, our results indicated that the CSE/CD62E pathway could effectively improve the inflammatory environment and vascular invasion in IVD. Hence, the findings of this study propose a promising and valuable strategy for the treatment of patients with early IDD as well as postoperative adjuvant therapy in patients with severe IDD.

2.
Innate Immun ; 27(7-8): 514-524, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34806444

RESUMO

This study investigated the effect and mechanism of chrysosplenol D (CD) on LPS-induced acute lung injury in mice. Histological changes in the lungs were measured by hematoxylin-eosin staining. The levels of IL-6, IL-1ß, and TNF-α in the bronchoalveolar lavage fluid were detected by ELISA. The levels of oxidative stress were detected by the cuvette assay. Immune cells in peripheral blood, the levels of reactive oxygen species, and apoptosis of primary lung cells were detected by flow cytometry. The mRNA levels of TLR4, MyD88, IL-1ß, and NLRP3 were measured by quantitative real-time polymerase chain reaction. The levels of proteins in apoptosis and the TLR4-MAPKs/NF-κB signaling pathways were detected by Western blot. Hematoxylin-eosin staining showed that CD could improve lung injury; decrease the levels of inflammatory factors, oxidative stress, reactive oxygen species, and cell apoptosis; and regulate the immune system. Moreover, CD could down-regulate the mRNA levels of TLR4, MyD88, NLRP3, and IL-1ß in lung, and the protein levels of Keap-1, Cleaved-Caspase-3/Caspase-3, Cleaved-Caspase-9/Caspase-9, TLR4, MyD88, p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-p65/p65, NLRP3, and IL-1ß, and up-regulated the levels of Bcl-2/Bax, p-Nrf2/Nrf2, and HO-1. The results suggested that CD could protect mice against LPS-induced acute lung injury by inhibiting oxidative stress, inflammation, and apoptosis via the TLR4-MAPKs/NF-κB signaling pathways.

3.
Adv Mater ; 33(43): e2103050, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34463382

RESUMO

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage, yet they are plagued by the notorious polysulfide shuttle effect and sluggish redox kinetics. While rationally designed redox mediators can facilitate polysulfide conversion, favorable bidirectional sulfur electrocatalysis remains a formidable challenge. Herein, selective dual-defect engineering (i.e., introducing both N-doping and Se-vacancies) of a common MoSe2 electrocatalyst is used to manipulate the bidirectional Li2 S redox. Systematic theoretical prediction and detailed electrokinetic analysis reveal the selective electrocatalytic effect of the two types of defects, thereby achieving a deeper mechanistic understanding of the bidirectional sulfur electrochemistry. The Li-S battery using this electrocatalyst exhibits excellent cyclability, with a low capacity decay rate of 0.04% per cycle over 1000 cycles at 2.0 C. More impressively, the potential for practical applications is highlighted by a high areal capacity (7.3 mAh cm-2 ) and the construction of a flexible pouch cell. Such selective electrocatalysis created by dual-defect engineering is an appealing approach toward working Li-S systems.

4.
Angew Chem Int Ed Engl ; 60(46): 24558-24565, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435420

RESUMO

Witnessing compositional evolution and identifying the catalytically active moiety of electrocatalysts is of paramount importance in Li-S chemistry. Nevertheless, this field remains elusive. We report the scalable salt-templated synthesis of Se-vacancy-incorporated MoSe2 architecture (SeVs-MoSe2 ) and reveal the phase evolution of the defective precatalyst in working Li-S batteries. The interaction between lithium polysulfides and SeVs-MoSe2 is probed to induce the transformation from SeVs-MoSe2 to MoSeS. Furthermore, operando Raman spectroscopy and ex situ X-ray diffraction measurements in combination with theoretical simulations verify that the effectual MoSeS catalyst could help promote conversion of Li2 S2 to Li2 S, thereby boosting the capacity performance. The Li-S battery accordingly exhibits a satisfactory rate and cycling capability even with and elevated sulfur loading and lean electrolyte conditions (7.67 mg cm-2 ; 4.0 µL mg-1 S ). This work elucidates the design strategies and catalytic mechanisms of efficient electrocatalysts bearing defects.

5.
Front Immunol ; 12: 666361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168643

RESUMO

The accumulation of macrophages in degenerated discs is a common phenomenon. However, the roles and mechanisms of M2a macrophages in intervertebral disc degeneration (IDD) have not been illuminated. This study investigated the expression of the M2a macrophage marker (CD206) in human and rat intervertebral disc tissues by immunohistochemistry. To explore the roles of M2a macrophages in IDD, nucleus pulposus (NP) cells were co-cultured with M2a macrophages in vitro. To clarify whether the CHI3L1 protein mediates the effect of M2a macrophages on NP cells, siRNA was used to knock down CHI3L1 transcription. To elucidate the underlying mechanisms, NP cells were incubated with recombinant CHI3L1 proteins, then subjected to western blotting analysis of the IL-13Rα2 receptor and MAPK pathway. CD206-positive cells were detected in degenerated human and rat intervertebral disc tissues. Notably, M2a macrophages promoted the expression of catabolism genes (MMP-3 and MMP-9) and suppressed the expression of anabolism genes (aggrecan and collagen II) in NP cells. These effects were abrogated by CHI3L1 knockdown in M2a macrophages. Exposure to recombinant CHI3L1 promoted an extracellular matrix metabolic imbalance in NP cells via the IL-13Rα2 receptor, along with activation of the ERK and JNK MAPK signaling pathways. This study elucidated the roles of M2a macrophages in IDD and identified potential mechanisms for these effects.


Assuntos
Proteína 1 Semelhante à Quitinase-3/imunologia , Matriz Extracelular/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Degeneração do Disco Intervertebral/imunologia , Sistema de Sinalização das MAP Quinases , Macrófagos/imunologia , Animais , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Degeneração do Disco Intervertebral/patologia , Lectinas Tipo C/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/imunologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos , Receptores de Superfície Celular/metabolismo
6.
Water Sci Technol ; 83(8): 1893-1906, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905360

RESUMO

Anthropogenic loss of phosphorus to surface waters not only causes environmental problems but depletes valuable phosphorus reserves. In this study, magnesium amended biochars and magnesium silicate, synthesized from corn cobs and rice straw, respectively, were evaluated for phosphorus uptake including the effects of pH and alkalinity. The overall goal was to close the phosphorus loop by recovering phosphorus from animal waste and reusing it as fertilizer. After phosphorus uptake, spent materials were tested for phosphorus release using modified soil tests representing different soil pH and alkalinity conditions. In experiments using model animal wastewaters containing both ammonia and bicarbonate alkalinity, dissolved phosphorus was removed by struvite (MgNH4PO4·6H2O) formation, whereas in deionized water, dissolved phosphorus was removed by adsorption. Alkalinity in the model animal wastewaters competed with phosphate for dissolved or solid-associated magnesium, thereby reducing phosphorus uptake. Spent materials released significant phosphorus in waters with bicarbonate alkalinity. This work shows that abundant agricultural wastes can be used to synthesize solids for phosphorus uptake, with the spent materials having potential application as fertilizers.


Assuntos
Oryza , Fósforo , Animais , Fertilizantes , Fosfatos , Estruvita , Águas Residuárias , Zea mays
7.
Adv Mater ; 33(10): e2006794, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33501736

RESUMO

Conjugated polymers usually form crystallized and amorphous regions in the solid state simultaneously, making it difficult to accurately determine their precise microstructures. The lack of multiscale microstructures of conjugated polymers limits the fundamental understanding of the structure-property relationships in polymer-based optoelectronic devices. Here, crystals of two typical conjugated polymers based on four-fluorinated benzodifurandione-based oligo(p-phenylene vinylene) (F4 BDOPV) and naphthalenediimide (NDI) motifs, respectively, are obtained by a controlled self-assembly process. The strong diffractivity of the polymer crystals brings an opportunity to determine the crystal structures by combining X-ray techniques and molecular simulations. The precise polymer packing structures are useful as initial models to evaluate the charge transport properties in the ordered and disordered phases. Compared to the spin-coated thin films, the highly oriented polymer chains in crystals endow higher mobilities with a lower hopping energy barrier. Microwire crystal transistors of F4 BDOPV- and NDI-based polymers exhibit high electron mobilities of up to 5.58 and 2.56 cm2  V-1  s-1 , respectively, which are among the highest values in polymer crystals. This work presents a simple method to obtain polymer crystals and their precise microstructures, promoting a deep understanding of molecular packing and charge transport for conjugated polymers.

8.
Angew Chem Int Ed Engl ; 60(11): 5816-5820, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231911

RESUMO

Molecular doping plays an important role in the modification of carrier density of organic semiconductors thus enhancing their optoelectronic performance. However, efficient n-doping remains challenging, especially owing to the lack of strongly reducing and air-stable n-dopants. Herein, an N-heterocyclic carbene (NHC) precursor, DMImC, is developed as a thermally activated n-dopant with the excellent stability in air. Its thermolysis in situ regenerates free NHC and subsequently dopes typical organic semiconductors. In sequentially doped FBDPPV films, DMImC does not disturb the π-π packing of the polymer and achieves good miscibility with the polymer. As a result, a high electrical conductivity of up to 8.4 S cm-1 is obtained. Additionally, the thermally activated doping and the excellent air stability permit DMImC to be noninteractively co-processed with polymers in air. Our results reveal that DMImC can be served as an efficient n-dopant suitable for various organic semiconductors.

9.
J Am Chem Soc ; 142(36): 15340-15348, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786750

RESUMO

The low n-doping efficiency of conjugated polymers with the molecular dopants limits their availability in electrical conductivity, thermoelectrics, and other electric applications. Recently, considerable efforts have focused on improving the ionization of dopants by modifying the structures of host polymers or n-dopants; however, the effect of ionized dopants on the electrical conductivity and thermoelectric performance of the polymers is still a puzzle. Herein, we try to reveal the role of molecular dopant cations on carrier transport through the systematic comparison of two n-dopants, TAM and N-DMBI-H. These two n-dopants exhibit various doping features with the polymer due to their different chemical structure characteristics. For instance, while doping, TAM negligibly perturbs the polymer backbone conformation and microstructural ordering; then after ionization, TAM cations possess weak π-backbone affinity but strong intrinsic affinity with side chains, which enables the doped system to screen the Coulomb potential spatially. Such doping features lead to high carrierization capabilities for TAM-doped polymers and further result in an excellent conductivity of up to 22 ± 2.5 S cm-1 and a power factor of over 80 µW m-1 K-2, which are significantly higher than the state of the art values of the common n-dopant N-DMBI-H. More importantly, this strategy has also proven to be widely applicable in other doped polymers. Our investigations indicate the vital role of dopant counterions in high electrical and thermoelectric performance polymers and also suggest that, without sacrificing Seebeck coefficients, high conductivities can be realized with precise regulation of the interaction between the cations and the host.

10.
Nat Commun ; 11(1): 3292, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620924

RESUMO

N-doping plays an irreplaceable role in controlling the electron concentration of organic semiconductors thus to improve performance of organic semiconductor devices. However, compared with many mature p-doping methods, n-doping of organic semiconductor is still of challenges. In particular, dopant stability/processability, counterion-semiconductor immiscibility and doping induced microstructure non-uniformity have restricted the application of n-doping in high-performance devices. Here, we report a computer-assisted screening approach to rationally design of a triaminomethane-type dopant, which exhibit extremely high stability and strong hydride donating property due to its thermally activated doping mechanism. This triaminomethane derivative shows excellent counterion-semiconductor miscibility (counter cations stay with the polymer side chains), high doping efficiency and uniformity. By using triaminomethane, we realize a record n-type conductivity of up to 21 S cm-1 and power factors as high as 51 µW m-1 K-2 even in films with thicknesses over 10 µm, and we demonstrate the first reported all-polymer thermoelectric generator.

11.
Drug Des Devel Ther ; 14: 921-931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184561

RESUMO

Purpose: Intervertebral disc degeneration (IVDD) is the main cause of modern low back pain, leading to high societal economic costs. To find an effective medical treatment for this disease, oxymatrine liposomes (OMT-LIP) were prepared with the pH-gradient method. Materials and Methods: Nucleus pulposus (NP) cells from Sprague-Dawley rats were used for the cell experiments. Kunming mice were used for in vivo imaging. LIP were employed to deliver OMT, and the particle size, ζ-potential, morphology, in vitro stability and in vitro release characteristics were evaluated. The OMT-LIP targeting effect was measured by in vivo imaging. Cell Counting Kit-8 assays were used to detect the cytotoxicity of OMT and OMT-LIP on NP cells. Therapeutic efficacy was measured by Western blot, real-time quantitative polymerase chain reaction, and apoptosis assays. Radiologic analysis was performed to evaluate the therapeutic effects in vivo. Results: Orthogonal test results revealed that the mass ratio of egg yolk phosphatidylcholine to cholesterol was the key factor to effectively trap OMT in LIP. Optimal OMT-LIP showed multivesicular structure with entrapment efficiency of 73.4 ± 4.1%, particle size of 178.1 ± 2.9 nm, and ζ-potential of -13.30 ± 2.34 mV. OMT-LIP manifested excellent stability in vitro and presented significantly longer sustained release compared to OMT solution in phosphate-buffered saline (pH 7.4). OMT-LIP conspicuously increased OMT accumulation in the degenerative disc, attenuated NP cell apoptosis, reduced the expression of matrix metalloproteinases 3/9 and interleukin-6, and decreased degradation of type II collagen. In in vivo study, X-ray demonstrated that OMT-LIP inhibited IVDD. Conclusion: OMT-LIP may be a useful treatment to alleviate disc inflammation and IVDD.


Assuntos
Alcaloides/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Quinolizinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipossomos/farmacologia , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Propriedades de Superfície
12.
Plant J ; 103(2): 604-616, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32215974

RESUMO

The frequent occurrence of chalky rice (Oryza sativa L.) grains becomes a serious problem as a result of climate change. The molecular mechanism underlying chalkiness is largely unknown, however. In this study, the temperature-sensitive floury endosperm11-2 (flo11-2) mutant was isolated from ion beam-irradiated rice of 1116 lines. The flo11-2 mutant showed significantly higher chalkiness than the wild type grown under a mean temperature of 28°C, but similar levels of chalkiness to the wild type grown under a mean temperature of 24°C. Whole-exome sequencing of the flo11-2 mutant showed three causal gene candidates, including Os12g0244100, which encodes the plastid-localized 70-kDa heat shock protein 2 (cpHSP70-2). The cpHSP70-2 of the flo11-2 mutant has an amino acid substitution on the 259th aspartic acid with valine (D259V) in the conserved Motif 5 of the ATPase domain. Transgenic flo11-2 mutants that express the wild-type cpHSP70-2 showed significantly lower chalkiness than the flo11-2 mutant. Moreover, the accumulation level of cpHSP70-2 was negatively correlated with the chalky ratio, indicating that cpHSP70-2 is a causal gene for the chalkiness of the flo11-2 mutant. The intrinsic ATPase activity of recombinant cpHSP70-2 was lower by 23% at Vmax for the flo11-2 mutant than for the wild type. The growth of DnaK-defective Escherichia coli cells complemented with DnaK with the D201V mutation (equivalent to the D259V mutation) was severely reduced at 37°C, but not in the wild-type DnaK. The results indicate that the lowered cpHSP70-2 function is involved with the chalkiness of the flo11-2 mutant.


Assuntos
Grão Comestível/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Grão Comestível/normas , Estudos de Associação Genética , Resposta ao Choque Térmico , Mutação , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Temperatura , Sequenciamento Completo do Exoma
15.
Artigo em Inglês | MEDLINE | ID: mdl-31540337

RESUMO

To improve the biodegradation efficiency of fluoroquinolone antibiotics during sewage treatment, fluoroquinolone aerobic, anaerobic and facultative degrading enzymes for fluoroquinolone degradation were modified by molecular docking and homology modelling. First, amino acid residues of the binding sites of degrading enzymes for the target fluoroquinolones ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) were analysed by the molecular docking method. The hydrophobic amino acid residues within 5 Å of the target fluoroquinolone molecules were selected as the modification sites. The hydrophobic amino acid residues at the modified sites were replaced by the hydrophilic amino acid residues, and 150 amino acid sequence modification schemes of the degrading enzymes were designed. Subsequently, a reconstruction scheme of the degrading enzyme amino acid sequence reconstruction scheme was submitted to the SWISS-MODEL server and a selected homology modelling method was used to build a new structure of the degrading enzyme. At the same time, the binding affinities between the novel degrading enzymes and the target fluoroquinolones (represented by the docking scoring function) were evaluated by the molecular docking method. It was found that the novel enzymes can simultaneously improve the binding affinities for the three target fluoroquinolones, and the degradation ability of the six modification schemes was increased by more than 50% at the same time. Among the novel enzymes, the affinity effect of the novel anaerobic enzyme (6-1) with CIP, NOR and OFL was significantly increased, with increases of 129.24%, 165.06% and 169.59%, respectively, followed by the facultative enzyme and aerobic enzyme. In addition, the designed degrading enzymes had certain selectivity for the degradation of the target quinolone. Among the novel enzymes, the binding affinities of the novel anaerobic enzyme (6-3) and CIP, the novel aerobic enzyme (3-6) and NOR, and the novel facultative enzyme (13-6) and OFL were increased by 149.71%, 178.57% and 297.12% respectively. Calculations using the Gaussian09 software revealed that the degradation reaction barrier of the novel degrading enzyme (7-1) and CIP NOR and OFL decreased by 37.65 kcal·mol-1, 6.28 kcal·mol-1 and 6.28 kcal·mol-1, respectively, which would result in efficient degradation of the target fluoroquinolone molecules. By analysing the binding affinity of the degrading enzymes before and after the modification with methanol, it was further speculated that the degradation effect of the modified aerobic degrading enzymes on organic matter was lower than that before the modification, and the increase or decrease in the degradation effect was less than 10%. The mechanism analysis found that the interaction between the modified amino acid residues of the degrading enzymes and the fluoroquinolone molecules increased. The average distance between the amino acid residues and the fluoroquinolone molecules represented a comprehensive affinity effect, and its value was positively correlated with the degradation effect of the novel degrading enzymes.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Modelos Moleculares , Norfloxacino/metabolismo , Ofloxacino/metabolismo , Aminoácidos/metabolismo , Antibacterianos/química , Sítios de Ligação , Biodegradação Ambiental , Ciprofloxacina/química , Norfloxacino/química , Ofloxacino/química
16.
Adv Mater ; 30(43): e1802850, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30252162

RESUMO

Conjugated polymers with high thermoelectric performance enable the fabrication of low-cost, large-area, low-toxicity, and highly flexible thermoelectric devices. However, compared to their p-type counterparts, n-type polymer thermoelectric materials show much lower performance, which is largely due to inefficient doping and a much lower conductivity. Herein, it is reported that the development of a donor-acceptor (D-A) polymer with enhanced n-doping efficiency through donor engineering of the polymer backbone. Both a high n-type electrical conductivity of 1.30 S cm-1 and an excellent power factor (PF) of 4.65 µW mK-2 are obtained, which are the highest reported values among D-A polymers. The results of multiple characterization techniques indicate that electron-withdrawing modification of the donor units enhances the electron affinity of the polymer and changes the polymer packing orientation, leading to substantially improved miscibility and n-doping efficiency. Unlike previous studies in which improving the polymer-dopant miscibility typically resulted in lower mobilities, the strategy maintains the mobility of the polymer. All these factors lead to prominent enhancement of three orders magnitude in both the electrical conductivity and the PF compared to those of the non-engineered polymer. The results demonstrate that proper donor engineering can enhance the n-doping efficiency, electrical conductivity, and thermoelectric performance of D-A copolymers.

17.
Molecules ; 23(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997372

RESUMO

DNA aptamers are important tools for molecular recognition, particularly for a new generation of tools for biomedicine based on nucleic acid nanostructures. Here, we investigated the relative abilities of different shapes and sizes of DNA polyhedra to display an aptamer which binds to the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH). The aptamer was shown to perform an Aptamer-Tethered Enzyme Capture (APTEC) assay with the hypothesis that the display of the aptamer above the surface through the use of a polyhedron may lead to better sensitivity than use of the aptamer alone. We compared different numbers of points of contact, different shapes, including tetrahedron, square, and pentagon-based pyramids, as well as prisms. We also investigated the optimal height of display of the structure. Our results demonstrated that the display of an aptamer on an optimized nanostructure improved sensitivity up to 6-fold relative to the aptamer alone in the APTEC assay. Other important factors included multiple basal points of contact with the surface, a tetrahedron proved superior to the more complex shaped structures, and height above the surface only made minor differences to efficacy. The display of an aptamer on a nanostructure may be beneficial for higher sensitivity aptamer-mediated malaria diagnosis. Aptamer displays using DNA nanostructure polyhedron supports could be a useful approach in a variety of applications.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/metabolismo , Nanoestruturas/química , Plasmodium falciparum/enzimologia , Proteínas Recombinantes/sangue , Proteínas Recombinantes/metabolismo
18.
Sci Total Environ ; 545-546: 601-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26760279

RESUMO

The crop water footprint (WF) indicates the consumption of water for a crop during the planting period, mainly through evapotranspiration. However, as irrigated agriculture accounts for nearly 25% of the global agriculture water usage, evaluation of WF during transportation becomes essential to improve the efficiency of irrigated agriculture. This study aims at building an improved WF model to understand how much WF is produced due to water diversion and how much crop WF increases during the transfer. The proposed model is then used to calculate the WF of four major crops in five provinces along China's South-North Water Transfer Project in two steps. First, the WF of the water transfer project (WFeng) is assessed in a supply chain analysis method. Second, a WF allocation model is built to distribute the project WF for each crop/province. The results show that the evaporation and seepage are the main sources of WFeng. Out of five provinces, two namely Tianjin and Hebei present higher WFblue and WF increase. A positive correlation between water diversion distance and crop WF increase is noted. Among the four crops, cotton presents higher WFblue and WF increase. The crops with higher WFblue tend to be more strongly influenced by the water diversion project, due to high irrigation water dependency. This analysis may expand the WF concept from an evaporation-related term to a term reflecting crop biological processes and water consumption by artificial irrigation projects. Thus, it may serve as an indicator for optimizing future objectives and strategies associated to water resource planning in China and elsewhere.

19.
J Am Chem Soc ; 137(50): 15947-56, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26619351

RESUMO

Molecular packing in organic single crystals greatly influences their charge transport properties but can hardly be predicted and designed because of the complex intermolecular interactions. In this work, we have realized systematic fine-tuning of the single-crystal molecular packing of five benzodifurandione-based oligo(p-phenylenevinylene) (BDOPV)-based small molecules through incorporation of electronegative fluorine atoms on the BDOPV backbone. While these molecules all exhibit similar column stacking configurations in their single crystals, the intermolecular displacements and distances can be substantially modified by tuning of the amounts and/or the positions of the substituent fluorine atoms. Density functional theory calculations showed that the subtle differences in charge distribution or electrostatic potential induced by different fluorine substitutions play an important role in regulating the molecular packing of the BDOPV compounds. Consequently, the electronic couplings for electron transfer can vary from 71 meV in a slipped stack to 201 meV in a nearly cofacial antiparallel stack, leading to an increase in the electron mobility of the BDOPV derivatives from 2.6 to 12.6 cm(2) V(-1) s(-1). The electron mobility of the five molecules did not show a good correlation with the LUMO levels, indicating that the distinct difference in charge transport properties is a result of the molecular packing. Our work not only provides a series of high-electron-mobility organic semiconductors but also demonstrates that fluorination is an effective approach for fine-tuning of single-crystal packing modes beyond simply lowering the molecular energy levels.

20.
Water Sci Technol ; 70(11): 1774-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25500466

RESUMO

Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.


Assuntos
Modelos Teóricos , Reforma Urbana , Recursos Hídricos , Abastecimento de Água , China , Humanos , Reciclagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...