Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem A ; 124(41): 8390-8397, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966071


The hydrogenation of 1,4-diphenylbutadiyne (DPB) blended with carbon-supported Pd (DPB-Pd/C) in the form of pellets was investigated by isothermal-isobaric experiments at 1333 Pa of H2 and in the temperature range of 291-315 K. The extracted kinetics were then used in conjunction with a complementary constant rate of H2 input experimentation to model the performance of a DPB-catalysis/support system as a function of temperature and H2 partial pressure. First-principles density functional theory (DFT) calculations were also performed to shed light on the molecular level energetics of DPB and its intermediate states. A seemingly puzzling formation of alternate positive activation energy barrier (higher reaction rate with higher temperature) and negative activation energy barrier (higher reaction rate with lower temperature) zones during the hydrogenation process was discovered. However, this observed phenomenon can be logically explained in terms of the associated phase changes and H2 transport in the material. This work provides a good illustration of a rarely encountered chemical process with a negative activation energy barrier.

J Phys Chem A ; 124(2): 283-287, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31860315


Lithium hydride (LiH) is a unique, ionic compound with applications in a variety of industries. Unfortunately, LiH is very reactive toward H2O even at ppm levels, forming oxide (Li2O) and hydroxide (LiOH) corrosion layers while outgassing H2. An effective means to eliminate unwanted outgassing is vacuum-heating to convert LiOH into Li2O, although subsequent re-exposure to moisture during transport/handling reconverts some Li2O back to LiOH. A corrosion growth model for previously vacuum-baked LiH is necessary for long-term prediction of the hydrolysis of LiH. In this work, a para-linear hydroxide corrosion growth model is proposed for the reaction of previously vacuum-baked LiH samples with moisture. This model, composed of two competing diffusion reaction fronts at the LiOH/Li2O and Li2O/LiH interfaces, is validated experimentally by subjecting a previously vacuum-baked polycrystalline LiH sample to 35 ppm of H2O at room temperature while monitoring the corrosion growth as a function of time with diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopy. The para-linear growth model for the hydrolysis of previously vacuum-baked LiH proposed in this report can also serve as a template for the hydrolysis of other hygroscopic oxides grown on metal or metal hydride substrates.

ACS Appl Mater Interfaces ; 12(3): 3993-4001, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31880909


The hydrogen uptake kinetics of 1,4-bis(phenylethynyl)benzene, or DEB, mixed with palladium (Pd) on activated carbon in a rubber matrix coating on top of a porous silicone foam substrate are investigated. First, isothermal isobaric hydrogenation experiments were performed under different temperatures and H2 pressures to extract the uptake kinetics. The H2 uptake models based on the measured kinetic parameters were then employed to investigate/simulate the performance of the getter under dynamic application environments. The actual hydrogenation characteristics in this type of getter are multifaceted and involve actual H2 concentration in the getter matrix, micrometer-scale diffusion of atomic hydrogen away from Pd sites, precipitation of hydrogenated DEB crystals at the coating surfaces, and mobility of fresh DEB molecules. The kinetic analysis/modeling methodology described in this report can serve as a template for other gas-solid reactions as well. Besides possessing a good hydrogen capacity and excellent performance, this type of rubberized getter also offers some unique advantages over traditional solid getter: flexible structure and protection of the Pd catalyst from exposure to the environment.

J Chem Phys ; 147(19): 194701, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166097


Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performed to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. Such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.

J Phys Chem A ; 116(22): 5312-6, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22591128


The rate of water desorption from PBX-9502, a formulation containing 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), is measured using temperature-programmed desorption and modeled using conventional kinetic modeling methods. The results of these studies show two stages of moisture release. At lower temperatures, the release is likely assisted by thermal expansion of the TATB and melting of the Kel-F binder. At higher temperatures, a considerable amount of water is released and is attributed to sublimation of the TATB, which exposes new surfaces for water desorption.