Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Orphanet J Rare Dis ; 14(1): 208, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443672

RESUMO

BACKGROUND: Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare disorder of urea cycle characterized by progressive pyramidal and cerebellar dysfunction, whose pathophysiology is not yet fully understood. Here we describe the spectrum of the long fibers involvement in HHH syndrome, attempting a correlation between clinical, electrophysiological and neuro-radiological data. METHODS: Nine HHH patients were longitudinally evaluated by clinical examination, neurophysiological assessment including motor (MEPs), somato-sensory evoked potentials (PESS) and nerve conduction velocity (NCV), brain and spinal cord MRI RESULTS: All patients had pyramidal dysfunction and 3/9 an overt spastic paraplegia. Mild to moderate cerebellar signs were found in 7/9, intellectual disability in 8/9. At lower limbs, MEPs resulted abnormal in 7/8 patients and PESS in 2/8; peripheral sensory-motor neuropathy was found in 1/9. MRI documented atrophic changes in supra-tentorial brain regions in 6/9 patients, cerebellum in 6/9, spinal cord in 3/7. CONCLUSIONS: A predominant corticospinal dysfunction is evident in HHH syndrome, along with milder cerebellar signs, intellectual disability of variable degree and rare peripheral neuropathy. Phenotypical similarities with other disorders affecting the urea cycle (argininemia and pyrroline-5-carboxylate synthetase deficiency) suggest possible common mechanisms contributing in the maintenance of the corticospinal tract integrity. HHH syndrome phenotype largely overlaps with complex Hereditary Spastic Paraplegias (HSPs), in the list of which it should be included, emphasizing the importance to screen all the unsolved cases of HSPs for metabolic biomarkers.

2.
Ann Clin Transl Neurol ; 6(8): 1533-1540, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402623

RESUMO

In 2015-2016, we and others reported ALDH18A1 mutations causing dominant (SPG9A) or recessive (SPG9B) spastic paraplegia. In vitro production of the ALDH18A1 product, Δ1 -pyrroline-5-carboxylate synthetase (P5CS), appeared necessary for cracking SPG9 disease-causing mechanisms. We now describe a baculovirus-insect cell system that yields mgs of pure human P5CS and that has proven highly valuable with two novel P5CS mutations reported here in new SPG9B patients. We conclude that both mutations are disease-causing, that SPG9B associates with partial P5CS deficiency and that it is clinically more severe than SPG9A, as reflected in onset age, disability, cognitive status, growth, and dysmorphic traits.

3.
J Inherit Metab Dis ; 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31260111

RESUMO

The increased survival of urea cycle disorders (UCDs) patients has led the attention to clinical manifestations that characterize the long-term disease course. Acute and chronic liver disease have been anecdotally reported since the very first description of UCDs. However, a detailed analysis of long-term liver involvement in large patient cohorts is still needed. Chronic liver damage in UCDs has probably a multifactorial origin, but the specific underlying mechanisms of liver disease have not yet been well elucidated. In this study, we report on chronic liver involvement and on associated metabolic abnormalities in a large cohort of 102 UCD patients, followed by two reference centers in Italy. Chronic liver involvement was observed in over 60% of UCDs patients, and comparison between individual diseases showed a significant higher frequency in argininosuccinate lyase deficiency (ASLD) and in hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome with elevation of transaminases and of gamma-GT in ASLD, and of alpha-fetoprotein in HHH syndrome. Also, consistent with a chronic hepatic dysfunction, ultrasound examination revealed more pronounced abnormalities in ASLD and in HHH syndrome, when compared to other UCDs. Our study highlights in a large UCDs patients' cohort that chronic liver disease is a common finding in UCDs, often with a distinct phenotype between different diseases. Furthers studies are needed to elucidate the specific involvement of different metabolic pathways in the pathogenesis of liver dysfunction in UCDs.

5.
J Inherit Metab Dis ; 2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30982989

RESUMO

In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.

6.
Mol Genet Genomic Med ; 7(5): e634, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30916492

RESUMO

BACKGROUND: Glycogen storage disease type III (GSDIII) is caused by mutations of AGL gene with debranching enzyme deficiency. Patients with GSDIII manifest fasting hypoglycemia, hepatomegaly, hepatopathy, myopathy, and cardiomyopathy. We report on an 18-year-old boy with a profound growth retardation (<3 SD) besides typical clinical features of GSDIII, whereby endocrinological studies were negative. METHODS AND RESULTS: Molecular analysis of AGL gene revealed the homozygous reported variant c.3903_3904insA. Since discordant results from segregation studies showed the carrier status in one parent only, SNP array and short tandem repeats analyses were performed, revealing a paternal disomy of chromosome 1 (UPD1). CONCLUSION: This study describes the first case of GSDIII resulting from UPD1. UPD can play an important role even in case of imprinted genes. DIRAS3 is a maternally imprinted tumor suppressor gene, located on chromosome 1p31, and implicated in growth and oncogenesis. It can be speculated that DIRAS3 overexpression might have a role in the severe short stature of our patient. The study emphasizes the importance of parental segregation analysis especially in patients with recessive conditions to look for specific genetic causes of disease and to estimate properly the risk of family recurrence.


Assuntos
Cromossomos Humanos Par 1/genética , Nanismo/genética , Doença de Depósito de Glicogênio Tipo III/genética , Fenótipo , Dissomia Uniparental/genética , Adolescente , Nanismo/patologia , Doença de Depósito de Glicogênio Tipo III/patologia , Humanos , Masculino , Dissomia Uniparental/patologia
7.
Orphanet J Rare Dis ; 14(1): 63, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832686

RESUMO

BACKGROUND: y+LAT1, encoded by SCL7A7, is the protein mutated in Lysinuric Protein Intolerance (LPI), a rare metabolic disease caused by a defective cationic amino acid (CAA, arginine, lysine, ornithine) transport at the basolateral membrane of intestinal and renal tubular cells. The disease is characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous with lung and immunological complications that are not explainable by the CAA transport defect. With the exception of the Finnish founder mutation (c.895-2A > T, LPIFin), LPI-causative mutations are heterogeneous and genotype-phenotype correlations have not been found. Here we addressed system y+L-mediated arginine uptake in monocytes from three LPI Italian patients and in lymphoblasts carrying the same mutations; in parallel, the genetic defects carried by the patients were reproduced as eGFP-tagged y+LAT1 mutants in transfected CHO cells to define the function and localization protein. RESULTS: System y+L activity is impaired in monocytes isolated from all LPI patients, and in CHO cells transfected with the three eGFP-y+LAT1 mutants, but not in lymphoblasts bearing the same mutations. The analysis of protein localization with confocal microscopy revealed that the eGFP-tagged mutants were retained inside the cytosol, with a pattern of expression quite heterogeneous among the mutants. CONCLUSIONS: The three mutations studied of y+LAT1 transporter result in a defective arginine transport both in ex vivo (monocytes) and in vitro (CHO transfected cells) models, likely caused by the retention of the mutated proteins in the cytosol. The different effect of y+LAT1 mutation on arginine transport in monocytes and lymphoblasts is supposed to be due to the different expression of SLC7A7 mRNA in the two models, supporting the hypothesis that the impact of LPI defect largely depends on the relative abundance of LPI target gene in each cell type.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Mutação , Transporte Proteico/genética , Adulto , Animais , Arginina/metabolismo , Células CHO , Células Cultivadas , Criança , Pré-Escolar , Cricetulus , Citosol/metabolismo , Feminino , Humanos , Masculino , Monócitos
8.
PLoS One ; 14(3): e0214250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921410

RESUMO

BACKGROUND: Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS: Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS: EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS: These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.

9.
Transplantation ; 103(9): 1903-1915, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30801523

RESUMO

BACKGROUND: Regenerative medicine using stem cell technology is an emerging field that is currently tested for inborn and acquired liver diseases. OBJECTIVE: This phase I/II prospective, open label, multicenter, randomized trial aimed primarily at evaluating the safety of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in pediatric patients with urea cycle disorders (UCDs) or Crigler-Najjar (CN) syndrome 6 months posttransplantation. The secondary objective included the assessment of safety up to 12 months postinfusion and of preliminary efficacy. METHODS: Fourteen patients with UCDs and 6 with CN syndrome were divided into 3 cohorts by body weight and intraportally infused with 3 doses of HepaStem. Clinical status, portal vein hemodynamics, morphology of the liver, de novo detection of circulating anti-human leukocyte antigen antibodies, and clinically significant adverse events (AEs) and serious adverse events to infusion were evaluated by using an intent-to-treat analysis. RESULTS: The overall safety of HepaStem was confirmed. For the entire study period, patient-month incidence rate was 1.76 for the AEs and 0.21 for the serious adverse events, of which 38% occurred within 1 month postinfusion. There was a trend of higher events in UCD as compared with CN patients. Segmental left portal vein thrombosis occurred in 1 patient and intraluminal local transient thrombus in a second patient. The other AEs were in line with expectations for catheter placement, cell infusion, concomitant medications, age, and underlying diseases. CONCLUSIONS: This study led to European clinical trial authorization for a phase II study in a homogeneous patient cohort, with repeated infusions and intermediate doses.

10.
J Inherit Metab Dis ; 42(2): 333-352, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773687

RESUMO

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.

11.
J Inherit Metab Dis ; 42(1): 93-106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30740724

RESUMO

BACKGROUND: To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS: Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS: Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS: The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (≤ 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS: Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilizing differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies.

12.
J Inherit Metab Dis ; 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723942

RESUMO

The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.

13.
J Inherit Metab Dis ; 42(1): 128-139, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30740731

RESUMO

PURPOSE: To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations. METHODS: Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8). Markers and decision limits were converted to multiples of the median (MoM) to allow comparison between centres. RESULTS: NBS programmes, algorithms and decision limits varied considerably. Only nine centres used the recommended second-tier marker total homocysteine (tHcy). The median decision limits of all centres were ≥ 2.35 for high and ≤ 0.44 MoM for low methionine, ≥ 1.95 for high and ≤ 0.47 MoM for low methionine/phenylalanine, ≥ 2.54 for high propionylcarnitine and ≥ 2.78 MoM for propionylcarnitine/acetylcarnitine. These decision limits alone had a 100%, 100%, 86% and 84% sensitivity for the detection of CBSD, MATI/IIID, iRMD and cRMD, respectively, but failed to detect six individuals with cRMD. To enhance sensitivity and decrease second-tier testing costs, we further adapted these decision limits using the data of 15 000 healthy newborns. CONCLUSIONS: Due to the favorable outcome of early treated patients, NBS for homocystinurias is recommended. To improve NBS, decision limits should be revised considering the population median. Relevant markers should be combined; use of the postanalytical tools offered by the CLIR project (Collaborative Laboratory Integrated Reports, which considers, for example, birth weight and gestational age) is recommended. tHcy and methylmalonic acid should be implemented as second-tier markers.

14.
Mol Genet Metab ; 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30514648

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD), a rare lysosomal storage disease, results from mutations in SMPD1, the gene encoding acid sphingomyelinase (ASM). As a result, sphingomyelin accumulates in multiple organs including spleen, liver, lung, bone marrow, lymph nodes, and in the most severe form, in the CNS and peripheral nerves. Clinical manifestations range from rapidly progressive and fatal infantile neurovisceral disease, to less rapidly progressing chronic neurovisceral and visceral forms that are associated with significant morbidity and shorter life span due to respiratory or liver disease. OBJECTIVES: To provide a contemporary guide of clinical assessments for disease monitoring and symptom management across the spectrum of ASMD phenotypes. METHODS: An international group of ASMD experts in various research and clinical fields used an evidence-informed consensus process to identify optimal assessments, interventions, and lifestyle modifications. RESULTS: Clinical assessment strategies for major organ system involvement, including liver, spleen, cardiovascular, pulmonary, and neurological/developmental are described, as well as symptomatic treatments, interventions, and/or life style modifications that may lessen disease impact. CONCLUSIONS: There is currently no disease-specific treatment for ASMD, although enzyme replacement therapy with a recombinant human ASM (olipudase alfa) is in clinical development. Current monitoring addresses symptoms and multisystem involvement. Recommended interventions and lifestyle modifications are designed to address morbidity and disease complications and improve patient quality of life. While infantile neurovisceral ASMD is uniformly fatal in early childhood, patients with chronic visceral and chronic neurovisceral ASMD require appropriate management throughout childhood and adulthood by an interdisciplinary clinical team.

15.
J Inherit Metab Dis ; 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30178268

RESUMO

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.

16.
J Pediatr ; 202: 272-278.e4, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30193751

RESUMO

OBJECTIVES: To evaluate the role of next generation sequencing in genetic diagnosis of pediatric patients with persistent hypoglycemia. STUDY DESIGN: Sixty-four patients investigated through an extensive workup were divided in 3 diagnostic classes based on the likelihood of a genetic diagnosis: (1) single candidate gene (9/64); (2) multiple candidate genes (43/64); and (3) no candidate gene (12/64). Subsequently, patients were tested through a custom gene panel of 65 targeted genes, which included 5 disease categories: (1) hyperinsulinemic hypoglycemia, (2) fatty acid-oxidation defects and ketogenesis defects, (3) ketolysis defects, (4) glycogen storage diseases and other disorders of carbohydrate metabolism, and (5) mitochondrial disorders. Molecular data were compared with clinical and biochemical data. RESULTS: A proven diagnosis was obtained in 78% of patients with suspicion for a single candidate gene, in 49% with multiple candidate genes, and in 33% with no candidate gene. The diagnostic yield was 48% for hyperinsulinemic hypoglycemia, 66% per fatty acid-oxidation and ketogenesis defects, 59% for glycogen storage diseases and other carbohydrate disorders, and 67% for mitochondrial disorders. CONCLUSIONS: This approach provided a diagnosis in ~50% of patients in whom clinical and laboratory evaluation did not allow identification of a single candidate gene and a diagnosis was established in 33% of patients belonging to the no candidate gene class. Next generation sequencing technique is cost-effective compared with Sanger sequencing of multiple genes and represents a powerful tool for the diagnosis of inborn errors of metabolism presenting with persistent hypoglycemia.

17.
Clin Chim Acta ; 486: 387-394, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30153451

RESUMO

BACKGROUND: Although representing two distinct disease entities, Niemann-Pick disease type C (NP-C) disease and acid sphingomyelinase deficiency (ASMD) share several phenotypic features. The lack of biomarkers was responsible in the past of diagnostic delay. Recently, plasma oxysterols, cholestan-3ß,5α,6ß-triol (Triol) and 7-ketocholesterol (7-KC) and lysosphingolipids, Lyso-sphingomyelin (Lyso-SM) and Lysosphingomyelin-509 (Lyso-SM-509), have been proposed as diagnostic biomarkers. We aimed to assess the diagnostic power of the two biomarkers categories and to evaluate possible correlations with patients' age and clinical phenotypes. PATIENTS AND METHODS: We analyzed plasma oxysterols and lysosphingolipids in patients affected by NP-C and ASMD, and compared with healthy controls. RESULTS: Oxysterols were always increased in both NP-C and ASMD. In NP-C, Lyso-SM and Lyso-SM-509 were increased in 70%, and 100% of patients, respectively. Biomarkers negatively correlated with patients' age, with highest levels in early-infantile, intermediate in the late-infantile and lowest in the juvenile phenotype. In ASMD, lysosphingolipids were both increased, with a greater order of magnitude than in NP-C, with highest levels in chronic-neurovisceral vs visceral phenotype. CONCLUSIONS: Lysosphingolipids are useful biomarkers for a rapid and precise diagnosis, allowing clear distinction between NP-C and ASMD. They are more reliable biomarkers than oxysterols and correlate with patients' age and clinical phenotype.

20.
J Inherit Metab Dis ; 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29974348

RESUMO

BACKGROUND: To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS: Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS: Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS: The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (≤ 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS: Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilising differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA