Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Rheumatol ; 15(12): 705-730, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31712723

RESUMO

Fibrosis is defined as an excessive deposition of connective tissue components and can affect virtually every organ system, including the skin, lungs, liver and kidney. Fibrotic tissue remodelling often leads to organ malfunction and is commonly associated with high morbidity and mortality. The medical need for effective antifibrotic therapies is thus very high. However, the extraordinarily high costs of drug development and the rare incidence of many fibrotic disorders hinder the development of targeted therapies for individual fibrotic diseases. A potential strategy to overcome this challenge is to target common mechanisms and core pathways that are of central pathophysiological relevance across different fibrotic diseases. The factors influencing susceptibility to and initiation of these diseases are often distinct, with disease-specific and organ-specific risk factors, triggers and sites of first injury. Fibrotic remodelling programmes with shared fibrotic signalling responses such as transforming growth factor-ß (TGFß), platelet-derived growth factor (PDGF), WNT and hedgehog signalling drive disease progression in later stages of fibrotic diseases. The convergence towards shared responses has consequences for drug development as it might enable the development of general antifibrotic compounds that are effective across different disease entities and organs. Technological advances, including new models, single-cell technologies and gene editing, could provide new insights into the pathogenesis of fibrotic diseases and the development of drugs for their treatment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31680161

RESUMO

OBJECTIVES: Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations. METHODS: SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses. RESULTS: The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP. AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001]. CONCLUSION: Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality.

3.
Nat Commun ; 10(1): 4955, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672989

RESUMO

Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.

5.
Ann Rheum Dis ; 78(12): 1686-1692, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31540936

RESUMO

OBJECTIVES: Fibrosis is a complex pathophysiological process involving interplay between multiple cell types. Experimental modelling of fibrosis is essential for the understanding of its pathogenesis and for testing of putative antifibrotic drugs. However, most current models employ either phylogenetically distant species or rely on human cells cultured in an artificial environment. Here we evaluated the potential of vascularised in vitro human skin equivalents as a novel model of skin fibrosis and a platform for the evaluation of antifibrotic drugs. METHODS: Skin equivalents were assembled on a three-dimensional extracellular matrix by sequential seeding of endothelial cells, fibroblasts and keratinocytes. Fibrotic transformation on exposure to transforming growth factor-ß (TGFß) and response to treatment with nintedanib as an established antifibrotic agent were evaluated by quantitative polymerase chain reaction (qPCR), capillary Western immunoassay, immunostaining and histology. RESULTS: Skin equivalents perfused at a physiological pressure formed a mature, polarised epidermis, a stratified dermis and a functional vessel system. Exposure of these models to TGFß recapitulated key features of SSc skin with activation of TGFß pathways, fibroblast to myofibroblast transition, increased release of collagen and excessive deposition of extracellular matrix. Treatment with the antifibrotic agent nintedanib ameliorated this fibrotic transformation. CONCLUSION: Our data provide evidence that vascularised skin equivalents can replicate key features of fibrotic skin and may serve as a platform for evaluation of antifibrotic drugs in a pathophysiologically relevant human setting.

6.
J Control Release ; 310: 198-208, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31430501

RESUMO

Interstitial lung involvement in Systemic Sclerosis (SSc-ILD) is a complication with high morbidity and mortality. Specifically, engineered gold nanoparticles (GNPs) are proposed as targeted delivery system increasing efficacy of drugs with antifibrotic effect, such as tyrosine kinases. We aimed to test in vitro and in vivo the activity of targeted Imatinib (Im)-loaded GNP on SSc-ILD patients derived cells and in experimental model of lung fibrosis. GNPs functionalized with anti-CD44 and loaded with Im (GNP-HCIm) were synthesized. Lung fibroblasts (LFs) and alveolar macrophages from bronchoalveolar lavage fluids of SSc-ILD patients were cultured in presence of nanoparticles. GNP-HCIm significantly inhibited proliferation and viability inducing apoptosis of LFs and effectively reduced IL-8 release, viability and M2 polarization in alveolar macrophages. Anti-fibrotic effect of tracheal instilled GNP-HCIm was evaluated on bleomycin lung fibrosis mouse model comparing effect with common route of Im administration. GNP-HCIm were able to reduce significantly lung fibrotic changes and collagen deposition. Finally, electron microscopy revealed the presence of GNPs inside alveolar macrophages. These data support the use of GNPs locally administered in the development of new therapeutic approaches to SSc-ILD.

7.
Ann Rheum Dis ; 78(12): 1681-1685, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31422354

RESUMO

BACKGROUND: The European Scleroderma Trials and Research Group (EUSTAR) recently developed a preliminarily revised activity index (AI) that performed better than the European Scleroderma Study Group Activity Index (EScSG-AI) in systemic sclerosis (SSc). OBJECTIVE: To assess the predictive value for short-term disease severity accrual of the EUSTAR-AI, as compared with those of the EScSG-AI and of known adverse prognostic factors. METHODS: Patients with SSc from the EUSTAR database with a disease duration from the onset of the first non-Raynaud sign/symptom ≤5 years and a baseline visit between 2003 and 2014 were first extracted. To capture the disease activity variations over time, EUSTAR-AI and EScSG-AI adjusted means were calculated. The primary outcome was disease progression defined as a Δ≥1 in the Medsger's severity score and in distinct items at the 2-year follow-up visit. Logistic regression analysis was carried out to identify predictive factors. RESULTS: 549 patients were enrolled. At multivariate analysis, the EUSTAR-AI adjusted mean was the only predictor of any severity accrual and of that of lung and heart, skin and peripheral vascular disease over 2 years. CONCLUSION: The adjusted mean EUSTAR-AI has the best predictive value for disease progression and development of severe organ involvement over time in SSc.

8.
Arthritis Rheumatol ; 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350829

RESUMO

BACKGROUND: Dipeptidyl-peptidase-4 (DPP4) identifies a dermal fibroblast lineage involved in scaring during wound healing. The role of DDP4 in tissue fibrosis, however, is unknown. The aim of the present study was to evaluate DPP4 as a potential target for the treatment of fibrosis in systemic sclerosis (SSc). METHODS: The expression of DPP4 was analyzed by real-time PCR, immunofluorescence and Western blot. The activity of DPP4 was modulated by overexpression, knockdown and pharmacological inhibition using Sitagliptin and Vildagliptin. The effects of DPP4 inhibition were analyzed in human dermal fibroblasts and in different mouse models of SSc (n=6). RESULTS: The expression of DPP4 and the number of DPP4 positive fibroblasts were increased in fibrotic skin of SSc patients in a TGF-ß dependent manner. DPP4 positive fibroblasts expressed higher levels of myofibroblast markers and collagen (p<0.001). Overexpression of DPP4 promoted fibroblast activation, whereas pharmacological or genetic inactivation of DPP4 reduced proliferation, migration, expression of contractile proteins and release of collagen by interfering with TGF-ß-induced ERK signaling (p<0.001). DPP4-knockout mice were less sensitive to bleomycin-induced dermal and pulmonary fibrosis (p<0.0001). Treatment with DPP4 inhibitors promoted regression of fibrosis induced by bleomycin- or chronic graft-versus-host disease and ameliorated fibrosis in TSK1 mice (p<0.001). The antifibrotic effects were associated with reduced inflammation. CONCLUSION: DPP4 characterizes a population of activated fibroblasts and regulates TGF-ß-induced fibroblast activation. Inhibition of DPP4 exerts potent anti-fibrotic effects in well tolerated doses. These results may have direct translational implications as DPP4 inhibitors are already in clinical use for diabetes. This article is protected by copyright. All rights reserved.

9.
Eur Respir J ; 54(3)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31285305

RESUMO

A proportion of patients with fibrosing interstitial lung diseases (ILDs) develop a progressive phenotype characterised by decline in lung function, worsening quality of life and early mortality. Other than idiopathic pulmonary fibrosis (IPF), there are no approved drugs for fibrosing ILDs and a poor evidence base to support current treatments. Fibrosing ILDs with a progressive phenotype show commonalities in clinical behaviour and in the pathogenic mechanisms that drive disease worsening. Nintedanib is an intracellular inhibitor of tyrosine kinases that has been approved for treatment of IPF and has recently been shown to reduce the rate of lung function decline in patients with ILD associated with systemic sclerosis (SSc-ILD). In vitro data demonstrate that nintedanib inhibits several steps in the initiation and progression of lung fibrosis, including the release of pro-inflammatory and pro-fibrotic mediators, migration and differentiation of fibrocytes and fibroblasts, and deposition of extracellular matrix. Nintedanib also inhibits the proliferation of vascular cells. Studies in animal models with features of fibrosing ILDs such as IPF, SSc-ILD, rheumatoid arthritis-ILD, hypersensitivity pneumonitis and silicosis demonstrate that nintedanib has anti-fibrotic activity irrespective of the trigger for the lung pathology. This suggests that nintedanib inhibits fundamental processes in the pathogenesis of fibrosis. A trial of nintedanib in patients with progressive fibrosing ILDs other than IPF (INBUILD) will report results in 2019.

10.
Arthritis Rheumatol ; 71(12): 2068-2080, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31309742

RESUMO

OBJECTIVE: To analyze the expression, regulation, and role of microRNA-125b (miR-125b) in systemic sclerosis (SSc). METHODS: MiR-125b expression was assessed by quantitative polymerase chain reaction (qPCR) of RNA from dermal fibroblasts and whole skin biopsy specimens from healthy controls and SSc patients. To identify downstream effectors, RNA from healthy control fibroblasts was sequenced after miR-125b knockdown and further validated using qPCR and Western blotting. Fibrosis, apoptosis, and proliferation were assessed by Caspase-Glo 3/7 assay, Western blotting, immunofluorescence staining for cleaved caspase 3, and annexin V real-time assay in dermal fibroblasts. RESULTS: Expression of miR-125b was significantly down-regulated in SSc skin biopsy specimens by 53% (median fold change 0.47 [interquartile range 0.35-0.69]; P < 0.001) and in SSc dermal fibroblasts by 47% (median fold change 0.53 [interquartile range 0.36-0.58]; P < 0.001) compared to healthy control skin biopsy specimens and fibroblasts, respectively (n = 10 samples per group). Treatment with the histone deacetylase inhibitors trichostatin A and tubastatin A significantly decreased the expression of miR-125b in dermal fibroblasts. MiR-125b knockdown significantly reduced cell proliferation and α-smooth muscle actin (α-SMA) expression at the messenger RNA (mRNA) and protein levels. RNA-Seq identified BAK1, BMF, and BBC3 as potential targets of miR-125b. Quantitative PCR confirmed that knockdown of miR-125b up-regulated these genes (P < 0.01; n = 12). Bcl-2 homologous antagonist killer 1 showed the strongest induction confirmed at the protein level (P < 0.01; n = 10). Consequently, miR-125b knockdown increased apoptosis compared to scrambled control. Accordingly, miR-125b overexpression decreased apoptosis. CONCLUSION: Our findings indicate that miR-125b is down-regulated in SSc skin and primary dermal fibroblasts. MiR-125b down-regulation increases apoptosis and decreases proliferation and α-SMA expression in dermal fibroblasts, indicating that its compensatory, antifibrotic mechanism may be a potential novel therapeutic option.

11.
Ann Rheum Dis ; 78(9): 1269-1273, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177096

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is characterised by aberrant hedgehog signalling in fibrotic tissues. The hedgehog acyltransferase (HHAT) skinny hedgehog catalyses the attachment of palmitate onto sonic hedgehog (SHH). Palmitoylation of SHH is required for multimerisation of SHH proteins, which is thought to promote long-range, endocrine hedgehog signalling. The aim of this study was to evaluate the role of HHAT in the pathogenesis of SSc. METHODS: Expression of HHAT was analysed by real-time polymerase chain reaction(RT-PCR), immunofluorescence and histomorphometry. The effects of HHAT knockdown were analysed by reporter assays, target gene studies and quantification of collagen release and myofibroblast differentiation in cultured human fibroblasts and in two mouse models. RESULTS: The expression of HHAT was upregulated in dermal fibroblasts of patients with SSc in a transforming growth factor-ß (TGFß)/SMAD-dependent manner. Knockdown of HHAT reduced TGFß-induced hedgehog signalling as well as myofibroblast differentiation and collagen release in human dermal fibroblasts. Knockdown of HHAT in the skin of mice ameliorated bleomycin-induced and topoisomerase-induced skin fibrosis. CONCLUSION: HHAT is regulated in SSc in a TGFß-dependent manner and in turn stimulates TGFß-induced long-range hedgehog signalling to promote fibroblast activation and tissue fibrosis. Targeting of HHAT might be a novel approach to more selectively interfere with the profibrotic effects of long-range hedgehog signalling.

13.
J Rheumatol ; 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30936287

RESUMO

OBJECTIVE: Scleroderma renal crisis (SRC) is a severe life-threatening manifestation in patients with systemic sclerosis (SSc). However, the knowledge about risk factors for SRC is limited. We determined here the frequency of SRC and identified risk factors for the prediction of SRC. METHODS: Based on regular followup data from the German Network for Systemic Scleroderma, we used univariate and multivariate generalized estimating equations to analyze the association between clinical variables, SSc subsets, therapy [i.e., angiotensin-converting enzyme inhibitors (ACEi), corticosteroids], and the occurrence of SRC. RESULTS: Data of 2873 patients with 10,425 visits were available for analysis with a mean number of registry visits of 3.6 ± 2.8 and a mean time of followup of 3.6 ± 3.8 years. In total, 70 patients developed SRC (70/2873, 2.4%). Of these patients, 57.1% (40/70) were diagnosed with diffuse cutaneous SSc, 31.4% (22/70) with limited cutaneous SSc, and 11.4% (8/70) with SSc-overlap syndromes. Predictive independent factors with the highest probability for SRC were positive anti-RNA polymerase antibodies (RNAP), a history of proteinuria prior to SRC onset, diminished DLCO, and a history of hypertension. Interestingly, positive antitopoisomerase autoantibodies did not predict a higher risk for SRC. Further, patients with SRC were significantly more frequently treated with ACEi and corticosteroids without being independently associated with SRC. CONCLUSION: In this cohort, SRC has become a rare complication. By far the highest risk for SRC was associated with the detection of anti-RNAP and proteinuria.

14.
Ann Rheum Dis ; 78(7): 979-987, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30967395

RESUMO

OBJECTIVE: To assess the safety and efficacy of rituximab in systemic sclerosis (SSc) in clinical practice. METHODS: We performed a prospective study including patients with SSc from the European Scleroderma Trials and Research (EUSTAR) network treated with rituximab and matched with untreated patients with SSc. The main outcomes measures were adverse events, skin fibrosis improvement, lung fibrosis worsening and steroids use among propensity score-matched patients treated or not with rituximab. RESULTS: 254 patients were treated with rituximab, in 58% for lung and in 32% for skin involvement. After a median follow-up of 2 years, about 70% of the patients had no side effect. Comparison of treated patients with 9575 propensity-score matched patients showed that patients treated with rituximab were more likely to have skin fibrosis improvement (22.7 vs 14.03 events per 100 person-years; OR: 2.79 [1.47-5.32]; p=0.002). Treated patients did not have significantly different rates of decrease in forced vital capacity (FVC)>10% (OR: 1.03 [0.55-1.94]; p=0.93) nor in carbon monoxide diffusing capacity (DLCO) decrease. Patients having received rituximab were more prone to stop or decrease steroids (OR: 2.34 [1.56-3.53], p<0.0001). Patients treated concomitantly with mycophenolate mofetil had a trend for better outcomes as compared with patients receiving rituximab alone (delta FVC: 5.22 [0.83-9.62]; p=0.019 as compared with controls vs 3 [0.66-5.35]; p=0.012). CONCLUSION: Rituximab use was associated with a good safety profile in this large SSc-cohort. Significant change was observed on skin fibrosis, but not on lung. However, the limitation is the observational design. The potential stabilisation of lung fibrosis by rituximab has to be addressed by a randomised trial.

15.
Nature ; 566(7744): 344-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700907

RESUMO

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Epigênese Genética , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores
16.
Nat Commun ; 9(1): 3259, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108215

RESUMO

Uncontrolled activation of TGFß signaling is a common denominator of fibrotic tissue remodeling. Here we characterize the tyrosine phosphatase SHP2 as a molecular checkpoint for TGFß-induced JAK2/STAT3 signaling and as a potential target for the treatment of fibrosis. TGFß stimulates the phosphatase activity of SHP2, although this effect is in part counterbalanced by inhibitory effects on SHP2 expression. Stimulation with TGFß promotes recruitment of SHP2 to JAK2 in fibroblasts with subsequent dephosphorylation of JAK2 at Y570 and activation of STAT3. The effects of SHP2 on STAT3 activation translate into major regulatory effects of SHP2 on fibroblast activation and tissue fibrosis. Genetic or pharmacologic inactivation of SHP2 promotes accumulation of JAK2 phosphorylated at Y570, reduces JAK2/STAT3 signaling, inhibits TGFß-induced fibroblast activation and ameliorates dermal and pulmonary fibrosis. Given the availability of potent SHP2 inhibitors, SHP2 might thus be a potential target for the treatment of fibrosis.

17.
Transplant Direct ; 4(7): e367, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30046657

RESUMO

Background: Nintedanib is a small molecule tyrosine kinase inhibitor that blocks the action of the platelet-derived growth factor receptor (PDGFR), the vascular endothelial growth factor receptor (VEGFR) and the fibroblast growth factor receptor. All of these receptors have been shown to be involved in the development of cardiac allograft vasculopathy (CAV) after heart transplantation. We therefore hypothesized that blocking these tyrosine kinase receptors with nintedanib could prevent CAV. Methods: CBA/JRj (H2k) mice underwent an abdominal aortic transplantation with a graft derived from fully allogeneic C57BL/6JRj (H2b) mice. Nintedanib was given daily from the first day after transplantation until harvest on day 14 for polymerase chain reaction analysis of intragraft cytokine expression or harvest on day 30 for histological analysis of the graft. Results: Nintedanib treatment resulted in significantly reduced neointima formation in the aortic graft compared with untreated control allografts. Interestingly, the immigration of smooth muscle cells into the neointima was markedly reduced while graft infiltrating macrophages and T cells were not altered in nintedanib-treated animals. The expression of the growth factor PDGF was significantly reduced in the nintedanib group going along with a distinctly reduced expression of the corresponding receptors PDGFR α and -ß. Conclusions: Treatment with nintedanib caused a significant reduction of CAV development after aortic transplantation in mice. We hypothesize the attenuated neointima formation in nintedanib-treated animals to be mediated by a direct inhibition of intimal smooth muscle cell proliferation via reduced expression of PDGF and the appropriate receptors PDGFR α + ß.

18.
Front Immunol ; 9: 989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867966

RESUMO

Deficient clearance of apoptotic cells reportedly contributes to the etiopathogenesis of the autoimmune disease systemic lupus erythematosus (SLE). Based on this knowledge, we developed a highly specific and sensitive test for the detection of SLE autoantibodies (AAb) utilizing secondary NEcrotic cell (SNEC)-derived material as a substrate. The goal of the present study was to validate the use of SNEC as an appropriate antigen for the diagnosis of SLE in large cohort of patients. We confirmed the presence of apoptotically modified autoantigens on SNEC (dsDNA, high mobility group box 1 protein, apoptosis-associated chromatin modifications, e.g., histones H3-K27-me3; H2A/H4 AcK8,12,16; and H2B-AcK12). Anti-SNEC AAb were measured in the serum of 155 patients with SLE, 89 normal healthy donors (NHD), and 169 patients with other autoimmune connective tissue diseases employing SNEC-based indirect enzyme-linked immunosorbent assay (SNEC ELISA). We compared the test performance of SNEC ELISA with the routine diagnostic tests dsDNA Farr radioimmunoassay (RIA) and nucleosome-based ELISA (anti-dsDNA-NcX-ELISA). SNEC ELISA distinguished patients with SLE with a specificity of 98.9% and a sensitivity of 70.6% from NHD clearly surpassing RIA and anti-dsDNA-NcX-ELISA. In contrast to the other tests, SNEC ELISA significantly discriminated patients with SLE from patients with rheumatoid arthritis, primary anti-phospholipid syndrome, spondyloarthropathy, psoriatic arthritis, and systemic sclerosis. A positive test result in SNEC ELISA significantly correlated with serological variables and reflected the uptake of opsonized SNEC by neutrophils. This stresses the relevance of SNECs in the pathogenesis of SLE. We conclude that SNEC ELISA allows for the sensitive detection of pathologically relevant AAb, enabling its diagnostic usage. A positive SNEC test reflects the opsonization of cell remnants by AAb, the neutrophil recruitment to tissues, and the enhancement of local and systemic inflammatory responses.

19.
Transpl Immunol ; 49: 43-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29649585

RESUMO

BACKGROUND: Cardiac allograft vasculopathy (CAV) is the main obstacle for long-term survival after heart transplantation. Alloimmune mediated chronic vascular rejection results in several mechanisms like platelet activation, immigration of inflammatory cells through the endothelial layer and proliferation and migration of smooth muscle cells (SMCs). Serotonin (5-HT) promotes these processes via activation of 5-HT2 receptors. We hypothesized that inhibiting 5-HT2 receptors ameliorates the development of CAV. METHODS: CBA/JRj mice recieved aortic grafts from C57BL/6 mice. After transplantation until recovery of organs, recipients were treated with serotonin receptor antagonists: sarpogrelate (5-HT2A), SB 204741 (5-HT2B) or terguride (5-HT2A+B). Mice were sacrificed after 14 days for qRT-PCR analysis or after 30 days for histological evaluation. Serum serotonin ELISA was done at both time points. RESULTS: Elevated serum serotonin levels were significantly reduced after 5-HT2A antagonist treatment as was 5-HT2A receptor expression. This went along with reduced inflammation characterized by significantly fewer infiltrating macrophages and pro-inflammatory intragraft cytokines and with reduced tissue remodeling evident as significantly less neointima formation. CONCLUSION: Inhibition of the 5HT/5-HT2A receptor axis leads to significantly reduced neointima proliferation after aortic transplantation associated with reduced transendothelial migration of macrophages and decreased expression of inflammatory cytokines. These findings have translational implications as inhibitors of 5HT2A like sarpogrelate are already approved for clinical use.

20.
Ann Rheum Dis ; 77(5): 744-751, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29431122

RESUMO

OBJECTIVES: The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated. METHODS: The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-ß (TGFß) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice. RESULTS: The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFß-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFß/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFß on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis. CONCLUSION: PARP-1 negatively regulates canonical TGFß signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFß signalling and to persistent fibroblast activation in SSc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA