Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Int J Med Inform ; 129: 334-341, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31445275

RESUMO

OBJECTIVE: Electronic health record (EHR) systems contain structured data (such as diagnostic codes) and unstructured data (clinical documentation). Clinical insights can be derived from analyzing both. The use of natural language processing (NLP) algorithms to effectively analyze unstructured data has been well demonstrated. Here we examine the utility of NLP for the identification of patients with non-alcoholic fatty liver disease, assess patterns of disease progression, and identify gaps in care related to breakdown in communication among providers. MATERIALS AND METHODS: All clinical notes available on the 38,575 patients enrolled in the Mount Sinai BioMe cohort were loaded into the NLP system. We compared analysis of structured and unstructured EHR data using NLP, free-text search, and diagnostic codes with validation against expert adjudication. We then used the NLP findings to measure physician impression of progression from early-stage NAFLD to NASH or cirrhosis. Similarly, we used the same NLP findings to identify mentions of NAFLD in radiology reports that did not persist into clinical notes. RESULTS: Out of 38,575 patients, we identified 2,281 patients with NAFLD. From the remainder, 10,653 patients with similar data density were selected as a control group. NLP outperformed ICD and text search in both sensitivity (NLP: 0.93, ICD: 0.28, text search: 0.81) and F2 score (NLP: 0.92, ICD: 0.34, text search: 0.81). Of 2281 NAFLD patients, 673 (29.5%) were believed to have progressed to NASH or cirrhosis. Among 176 where NAFLD was noted prior to NASH, the average progression time was 410 days. 619 (27.1%) NAFLD patients had it documented only in radiology notes and not acknowledged in other forms of clinical documentation. Of these, 170 (28.4%) were later identified as having likely developed NASH or cirrhosis after a median 1057.3 days. DISCUSSION: NLP-based approaches were more accurate at identifying NAFLD within the EHR than ICD/text search-based approaches. Suspected NAFLD on imaging is often not acknowledged in subsequent clinical documentation. Many such patients are later found to have more advanced liver disease. Analysis of information flows demonstrated loss of key information that could have been used to help prevent the progression of early NAFLD (NAFL) to NASH or cirrhosis. CONCLUSION: For identification of NAFLD, NLP performed better than alternative selection modalities. It then facilitated analysis of knowledge flow between physician and enabled the identification of breakdowns where key information was lost that could have slowed or prevented later disease progression.

2.
Nature ; 570(7762): 514-518, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31217584

RESUMO

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.

3.
Hum Genet ; 138(7): 739-748, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31154530

RESUMO

Metabolic syndrome is a complex human disorder characterized by a cluster of conditions (increased blood pressure, hyperglycemia, excessive body fat around the waist, and abnormal cholesterol or triglyceride levels). Any of these conditions increases the risk of serious disorders such as diabetes or cardiovascular disease. Currently, the degree of genetic regulation of this syndrome is under debate and partially unknown. The principal aim of this study was to estimate the genetic component and the common environmental effects in different populations using full pedigree and genomic information. We used three large populations (Gubbio, ARIC, and Ogliastra cohorts) to estimate the heritability of metabolic syndrome. Due to both pedigree and genotyped data, different approaches were applied to summarize relatedness conditions. Linear mixed models (LLM) using average information restricted maximum likelihood (AIREML) algorithm were applied to partition the variances and estimate heritability (h2) and common sib-household effect (c2). Globally, results obtained from pedigree information showed a significant heritability (h2: 0.286 and 0.271 in Gubbio and Ogliastra, respectively), whereas a lower, but still significant heritability was found using SNPs data ([Formula: see text]: 0.167 and 0.254 in ARIC and Ogliastra). The remaining heritability between h2 and [Formula: see text] ranged between 0.031 and 0.237. Finally, the common environmental c2 in Gubbio and Ogliastra were also significant accounting for about 11% of the phenotypic variance. Availability of different kinds of populations and data helped us to better understand what happened when heritability of metabolic syndrome is estimated and account for different possible confounding. Furthermore, the opportunity of comparing different results provided more precise and less biased estimation of heritability.


Assuntos
Predisposição Genética para Doença , Genética Populacional/métodos , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica/métodos , Síndrome Metabólica/genética , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Modelos Genéticos , Linhagem
5.
PLoS Med ; 16(1): e1002725, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645594

RESUMO

BACKGROUND: Studies have shown strong positive associations between serum urate (SU) levels and chronic kidney disease (CKD) risk; however, whether the relation is causal remains uncertain. We evaluate whether genetic data are consistent with a causal impact of SU level on the risk of CKD and estimated glomerular filtration rate (eGFR). METHODS AND FINDINGS: We used Mendelian randomization (MR) methods to evaluate the presence of a causal effect. We used aggregated genome-wide association data (N = 110,347 for SU, N = 69,374 for gout, N = 133,413 for eGFR, N = 117,165 for CKD), electronic-medical-record-linked UK Biobank data (N = 335,212), and population-based cohorts (N = 13,425), all in individuals of European ancestry, for SU levels and CKD. Our MR analysis showed that SU has a causal effect on neither eGFR level nor CKD risk across all MR analyses (all P > 0.05). These null associations contrasted with our epidemiological association findings from the 4 population-based cohorts (change in eGFR level per 1-mg/dl [59.48 µmol/l] increase in SU: -1.99 ml/min/1.73 m2; 95% CI -2.86 to -1.11; P = 8.08 × 10(-6); odds ratio [OR] for CKD: 1.48; 95% CI 1.32 to 1.65; P = 1.52 × 10(-11)). In contrast, the same MR approaches showed that SU has a causal effect on the risk of gout (OR estimates ranging from 3.41 to 6.04 per 1-mg/dl increase in SU, all P < 10-3), which served as a positive control of our approach. Overall, our MR analysis had >99% power to detect a causal effect of SU level on the risk of CKD of the same magnitude as the observed epidemiological association between SU and CKD. Limitations of this study include the lifelong effect of a genetic perturbation not being the same as an acute perturbation, the inability to study non-European populations, and some sample overlap between the datasets used in the study. CONCLUSIONS: Evidence from our series of causal inference approaches using genetics does not support a causal effect of SU level on eGFR level or CKD risk. Reducing SU levels is unlikely to reduce the risk of CKD development.


Assuntos
Insuficiência Renal Crônica/etiologia , Ácido Úrico/sangue , Adulto , Fatores Etários , Feminino , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/genética , Humanos , Masculino , Análise da Randomização Mendeliana , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/genética , Fatores Sexuais , Adulto Jovem
6.
Am J Hum Genet ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503522

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.

7.
Nat Genet ; 50(8): 1196, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29967445

RESUMO

In the version of this article initially published, the Supplementary Text and Figures file was missing Supplementary Tables 4, 6, 8 and 10-14. The correct file has now been provided online.

8.
Nat Genet ; 50(5): 693-698, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29686387

RESUMO

Horizontal pleiotropy occurs when the variant has an effect on disease outside of its effect on the exposure in Mendelian randomization (MR). Violation of the 'no horizontal pleiotropy' assumption can cause severe bias in MR. We developed the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) test to identify horizontal pleiotropic outliers in multi-instrument summary-level MR testing. We showed using simulations that the MR-PRESSO test is best suited when horizontal pleiotropy occurs in <50% of instruments. Next we applied the MR-PRESSO test, along with several other MR tests, to complex traits and diseases and found that horizontal pleiotropy (i) was detectable in over 48% of significant causal relationships in MR; (ii) introduced distortions in the causal estimates in MR that ranged on average from -131% to 201%; (iii) induced false-positive causal relationships in up to 10% of relationships; and (iv) could be corrected in some but not all instances.

9.
Kidney Int ; 93(6): 1409-1416, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29685497

RESUMO

G1/G2 variants in the Apolipoprotein L1 (APOL1) gene are associated with end-stage renal disease (ESRD) in people with African ancestry. Plasma biomarkers may have utility for risk stratification in APOL1 high-risk individuals of African ancestry. To evaluate this, we measured tumor necrosis factor receptor 1/2 (TNFR1/2) and kidney injury molecule-1 (KIM1) in baseline plasma specimens from individuals of African ancestry with high-risk APOL1 genotype. Biomarker association with a composite renal outcome of ESRD or 40% sustained decline in estimated glomerular filtration rate (eGFR) was then determined and then assessed as improvement in area under curve. Among the 498 participants, the median age was 56 years, 67.7% were female, and the baseline eGFR was 83.3 ml/min/1.73 m2 with 80 reaching outcome over 5.9 years. TNFR1, TNFR2, and KIM1 at enrollment were independently associated with renal outcome continuously (adjusted hazard ratio 2.0 [95% confidence interval 1.3-3.1]; 1.5 [1.2-1.9]; and 1.6 [1.3-1.9] per doubling in levels, respectively) or by tertiles. The area under the curve significantly improved from 0.75 with the clinical model to 0.79 with the biomarker-enhanced model. The event rate was 40% with all 3 biomarkers elevated (adjusted odds ratio of 5.3 (2.3-12.0) vs. 17% (adjusted odds ratio 1.8 [0.9-3.6] with 1 or 2 elevated and 7% with no biomarkers elevated. Thus, plasma concentrations of TNFR1, TNFR2, and KIM1 are independently associated with renal outcome and improve discrimination or reclassification of African ancestry individuals with a high-risk APOL1 genotype and preserve renal function. Elevation of all markers had higher risk of outcome and can assist with better clinical prediction and improved clinical trial efficiency by enriching event rates.

10.
Annu Rev Genomics Hum Genet ; 19: 289-301, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29641912

RESUMO

While sequence-based genetic tests have long been available for specific loci, especially for Mendelian disease, the rapidly falling costs of genome-wide genotyping arrays, whole-exome sequencing, and whole-genome sequencing are moving us toward a future where full genomic information might inform the prognosis and treatment of a variety of diseases, including complex disease. Similarly, the availability of large populations with full genomic information has enabled new insights about the etiology and genetic architecture of complex disease. Insights from the latest generation of genomic studies suggest that our categorization of diseases as complex may conceal a wide spectrum of genetic architectures and causal mechanisms that ranges from Mendelian forms of complex disease to complex regulatory structures underlying Mendelian disease. Here, we review these insights, along with advances in the prediction of disease risk and outcomes from full genomic information.

11.
J Am Coll Cardiol ; 69(24): 2941-2948, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28619195

RESUMO

BACKGROUND: Mitral annular calcium (MAC), commonly identified by cardiac imaging, is associated with cardiovascular events and predisposes to the development of clinically important mitral valve regurgitation and mitral valve stenosis. However, its biological determinants remain largely unknown. OBJECTIVES: The authors sought to evaluate whether a genetic predisposition to elevations in plasma lipids is associated with the presence of MAC. METHODS: The authors used 3 separate Mendelian randomization techniques to evaluate the associations of lipid genetic risk scores (GRS) with MAC in 3 large patient cohorts: the Framingham Health Study, MESA (Multiethnic European Study of Atherosclerosis), and the AGE-RS (Age, Gene/Environment Susceptibility-Reykjavik Study). The authors provided cross-ethnicity replication in the MESA Hispanic-American participants. RESULTS: MAC was present in 1,149 participants (20.4%). In pooled analyses across all 3 cohorts, a triglyceride GRS was significantly associated with the presence of MAC (odds ratio [OR] per triglyceride GRS unit: 1.73; 95% confidence interval [CI]: 1.24 to 2.41; p = 0.0013). Neither low- nor high-density lipoprotein cholesterol GRS was significantly associated with MAC. Results were consistent in cross-ethnicity analyses among the MESA Hispanic-Americans cohort (OR per triglyceride GRS unit: 2.04; 95% CI: 1.03 to 4.03; p = 0.04). In joint meta-analysis across all included cohorts, the triglyceride GRS was associated with MAC (OR per triglyceride GRS unit: 1.79; 95% CI: 1.32 to 2.41; p = 0.0001). The results were robust to several sensitivity analyses that limit both known and unknown forms of genetic pleiotropy. CONCLUSIONS: Genetic predisposition to elevated triglyceride levels was associated with the presence of MAC, a risk factor for clinically significant mitral valve disease, suggesting a causal association. Whether reducing triglyceride levels can lower the incidence of clinically significant mitral valve disease requires further study.


Assuntos
Calcinose/genética , Predisposição Genética para Doença , Insuficiência da Valva Mitral/genética , Valva Mitral/diagnóstico por imagem , Polimorfismo Genético , Triglicerídeos/genética , Idoso , Calcinose/diagnóstico , Calcinose/metabolismo , Feminino , Seguimentos , Variação Genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/diagnóstico , Insuficiência da Valva Mitral/metabolismo , Estudos Prospectivos , Fatores de Risco , Tomografia Computadorizada por Raios X , Triglicerídeos/sangue
12.
Nat Genet ; 49(7): 1113-1119, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28530674

RESUMO

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10-8, in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms.


Assuntos
Artérias/patologia , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Aterosclerose/genética , Adesão Celular/genética , Quimiotaxia de Leucócito/genética , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Metabolismo Energético/genética , Feminino , Predisposição Genética para Doença , Genótipo , Código das Histonas , Humanos , Masculino , Músculo Liso Vascular/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Risco
13.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28461624

RESUMO

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Assuntos
Doença das Coronárias/genética , Doença das Coronárias/prevenção & controle , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fumar/efeitos adversos , Fumar/epidemiologia
14.
Nature ; 544(7649): 235-239, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28406212

RESUMO

A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.


Assuntos
Consanguinidade , Análise Mutacional de DNA , Deleção de Genes , Genes/genética , Estudos de Associação Genética/métodos , Homozigoto , Fenótipo , 1-Alquil-2-acetilglicerofosfocolina Esterase/deficiência , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Apolipoproteína C-III/deficiência , Apolipoproteína C-III/genética , Estudos de Coortes , Doença das Coronárias/sangue , Doença das Coronárias/genética , Família 2 do Citocromo P450/genética , Gorduras na Dieta/farmacologia , Exoma/genética , Jejum/sangue , Feminino , Frequência do Gene , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Neurregulinas/genética , Paquistão , Linhagem , Fosfoproteínas/genética , Período Pós-Prandial , Sítios de Splice de RNA/genética , Genética Reversa/métodos , Trocadores de Sódio-Hidrogênio/genética , Triglicerídeos/sangue
15.
J Am Coll Cardiol ; 69(7): 823-836, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28209224

RESUMO

BACKGROUND: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. OBJECTIVES: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. METHODS: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. RESULTS: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10-4 with a range of other diseases/traits. CONCLUSIONS: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.


Assuntos
Doença da Artéria Coronariana/genética , Loci Gênicos , Pleiotropia Genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/epidemiologia , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único
17.
Sci Rep ; 6: 35278, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731410

RESUMO

In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.


Assuntos
Cromossomos Humanos X , Doença da Artéria Coronariana/genética , Estudos de Coortes , Feminino , Humanos , Internacionalidade , Masculino
18.
Nature ; 536(7616): 285-91, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535533

RESUMO

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.


Assuntos
Exoma/genética , Variação Genética/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Humanos , Fenótipo , Proteoma/genética , Doenças Raras/genética , Tamanho da Amostra
19.
Nat Rev Rheumatol ; 12(8): 486-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27411906

RESUMO

Establishing causality of risk factors is important to determine the pathogenetic mechanisms underlying rheumatic diseases, and can facilitate the design of interventions to improve care for affected patients. The presence of unmeasured confounders, as well as reverse causation, is a challenge to the assignment of causality in observational studies. Alleles for genetic variants are randomly inherited at meiosis. Mendelian randomization analysis uses these genetic variants to test whether a particular risk factor is causal for a disease outcome. In this Review of the Mendelian randomization technique, we discuss published results and potential applications in rheumatology, as well as the general clinical utility and limitations of the approach.


Assuntos
Variação Genética , Análise da Randomização Mendeliana/métodos , Doenças Reumáticas/genética , Doenças Reumáticas/metabolismo , Ácido Úrico/urina , Densidade Óssea , Doenças Cardiovasculares/genética , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Interleucina-1/metabolismo , Fenótipo , Transdução de Sinais
20.
Cell ; 165(6): 1530-1545, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259154

RESUMO

Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.


Assuntos
Eritrócitos , Técnicas Genéticas , Variação Genética , Processamento Alternativo , Linhagem Celular , Linhagem da Célula/genética , Eritropoese/genética , Biblioteca Gênica , Genes Reporter , Humanos , Sequências Reguladoras de Ácido Nucleico , Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA