Unable to write in log file ../../bases/logs/portalorg/logerror.txt Pesquisa | Portal Regional da BVS
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Proc Natl Acad Sci U S A ; 120(3): e2212105120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623184


Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.

Florestas , Vento , Clima , Carbono
Proc Natl Acad Sci U S A ; 117(41): 25335-25343, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989169


Climate change is causing increasingly widespread, frequent, and intense wildfires across the western United States. Many geomorphic effects of wildfire are relatively well studied, yet sediment transport models remain unable to account for the rapid transport of sediment released from behind incinerated vegetation, which can fuel catastrophic debris flows. This oversight reflects the fundamental inability of local, continuum-based models to capture the long-distance particle motions characteristic of steeplands. Probabilistic, particle-based nonlocal models may address this deficiency, but empirical data are needed to constrain their representation of particle motion in real landscapes. Here we present data from field experiments validating a generalized Lomax model for particle travel distance distributions. The model parameters provide a physically intuitive mathematical framework for describing the transition from light- to heavy-tailed distributions along a continuum of behavior as particle size increases and slopes get steeper and/or smoother. We show that burned slopes are measurably smoother than vegetated slopes, leading to 1) lower rates of experimental particle disentrainment and 2) runaway motion that produces the heavy-tailed travel distances often associated with nonlocal transport. Our results reveal that surface roughness is a key control on steepland sediment transport, particularly after wildfire when smoother surfaces may result in the preferential delivery of coarse material to channel networks that initiate debris flows. By providing a first-order framework relating the statistics of particle motion to measurable surface characteristics, the Lomax model both advances the development of nonlocal sediment transport theory and reveals insights on hillslope transport mechanics.

Florestas , Modelos Teóricos , Plantas , Solo , Incêndios Florestais , Movimento (Física) , Tamanho da Partícula