Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 23(3): 100934, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32146327

RESUMO

The phenomenon of protein misfolding and aggregation is associated with a wide range of neurodegenerative conditions that cause progressive loss of function in specific regions of the human brain. To understand the causes of the selective cell and tissue vulnerability to the formation of these deposits, we analyzed the ability of different cell and tissue types to respond, in the absence of disease, to the presence of high levels of aggregation-prone proteins. By performing a transcriptional analysis, we found that the protein homeostasis system that regulates protein aggregation is weaker in neurons than in other cell types and in brain tissues than in other body tissues. These results suggest that the intrinsic level of regulation of protein aggregation in the healthy state is correlated with the selective vulnerability of cells and tissues to protein misfolding diseases.

2.
ACS Nano ; 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32159944

RESUMO

Proteinaceous deposits of α-synuclein amyloid fibrils are a hallmark of human disorders including Parkinson's disease. The onset of this disease is also associated with five familial mutations of the gene encoding the protein. However, the mechanistic link between single point mutations and the kinetics of aggregation, biophysical properties of the resulting amyloid fibrils, and an increased risk of disease is still elusive. Here, we demonstrate that the disease-associated mutations of α-synuclein generate different amyloid fibril polymorphs compared to the wild type protein. Remarkably, the α-synuclein variants forming amyloid fibrils of a comparable structure, morphology, and heterogeneity show similar microscopic steps defining the aggregation kinetics. These results demonstrate that a single point mutation can significantly alter the distribution of fibrillar polymorphs in α-synuclein, suggesting that differences in the clinical phenotypes of familial Parkinson's disease could be associated with differences in the mechanism of formation and the structural characteristics of the aggregates.

3.
Biomacromolecules ; 21(3): 1112-1125, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32011129

RESUMO

Alzheimer's disease is associated with the deposition of the amyloid-ß peptide (Aß) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aß scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aß40 by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aß40, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR). Both WT-TTR and M-TTR were found to inhibit specific steps of the process of Aß40 fibril formation, which are primary and secondary nucleations, without affecting the elongation of the resulting fibrils. Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aß40 oligomers formed in the aggregation reaction and inhibit their conversion into the shortest fibrils able to elongate. Using biophysical methods, TTR was found to change some aspects of its overall structure following such interactions with Aß40 oligomers, as well as with oligomers of Aß42, while maintaining its overall topology. Hence, it is likely that the predominant mechanism by which TTR exerts its protective role lies in the binding of TTR to the Aß oligomers and in inhibiting primary and secondary nucleation processes, which limits both the toxicity of Aß oligomers and the ability of the fibrils to proliferate.

4.
Proc Natl Acad Sci U S A ; 117(2): 1015-1020, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31892536

RESUMO

To function effectively proteins must avoid aberrant aggregation, and hence they are expected to be expressed at concentrations safely below their solubility limits. By analyzing proteome-wide mass spectrometry data of Caenorhabditis elegans, however, we show that the levels of about three-quarters of the nearly 4,000 proteins analyzed in adult animals are close to their intrinsic solubility limits, indeed exceeding them by about 10% on average. We next asked how aging and functional self-assembly influence these solubility limits. We found that despite the fact that the total quantity of proteins within the cellular environment remains approximately constant during aging, protein aggregation sharply increases between days 6 and 12 of adulthood, after the worms have reproduced, as individual proteins lose their stoichiometric balances and the cellular machinery that maintains solubility undergoes functional decline. These findings reveal that these proteins are highly prone to undergoing concentration-dependent phase separation, which on aging is rationalized in a decrease of their effective solubilities, in particular for proteins associated with translation, growth, reproduction, and the chaperone system.

5.
Sci Rep ; 10(1): 204, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937832

RESUMO

The aggregation of α-synuclein (αS), a protein abundant at presynaptic terminals, is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Emerging evidence indicates that the interaction of αS with lipid membranes defines both its physiological function and pathological effects. The characterisation of the modes of membrane binding by αS is therefore crucial to clarify the balance between normal and aberrant behaviour of this protein. Here we used solid-state nuclear magnetic resonance (ssNMR) spectroscopy to probe the nature of the N-terminally acetylated form of αS (NTAc-αS) bound to synaptic-like lipid vesicles. This post-translational modification is prevalent for the physiological form of αS and modulates the binding to lipid bilayers. By probing the structure, dynamics and membrane topology of NTAc-αS, we found that N-terminal acetylation does not alter significantly the conformational and topological properties of the membrane-bound state of αS, despite increasing its propensity for binding. Taken together, our data and previous characterisations of the cytosolic state of NTAc-αS clarify that the role of the N-terminal acetylation is to regulate the binding affinity of αS for synaptic vesicles without altering the structural properties of the bound state.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30936117

RESUMO

The misfolding of proteins is now recognized to be the origin of a large number of medical disorders. One particularly important group of such disorders is associated with the aggregation of misfolded proteins into amyloid structures, and includes conditions ranging from Alzheimer's and Parkinson's diseases to type II diabetes. Such conditions already affect over 500 million people in the world, a number that is rising rapidly, and at present these disorders cannot be effectively treated or prevented. This review provides an overview of this field of science and discusses recent progress in understanding the nature and properties of the amyloid state, the kinetics and mechanism governing its formation, the origins of its links with disease, and the manner in which its formation may be inhibited or suppressed. This latter topic is of particular importance, both to enhance our knowledge of the maintenance of protein homeostasis in living organisms and also to address the development of therapeutic strategies through which to combat the loss of homeostasis and the associated onset and progression of disease.

8.
Acta Neuropathol Commun ; 7(1): 197, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796104

RESUMO

Protein aggregation is a pathological feature of neurodegenerative disorders. We previously demonstrated that protein inclusions in the brain are composed of supersaturated proteins, which are abundant and aggregation-prone, and form a metastable subproteome. It is not yet clear, however, whether this phenomenon is also associated with non-neuronal protein conformational disorders. To respond to this question, we analyzed proteomic datasets from biopsies of patients with genetic and acquired protein aggregate myopathy (PAM) by quantifying the changes in composition, concentration and aggregation propensity of proteins in the fibers containing inclusions and those surrounding them. We found that a metastable subproteome is present in skeletal muscle from healthy patients. The expression of this subproteome escalate as proteomic samples are taken more proximal to the pathologic inclusion, eventually exceeding its solubility limits and aggregating. While most supersaturated proteins decrease or maintain steady abundance across healthy fibers and inclusion-containing fibers, proteins within the metastable subproteome rise in abundance, suggesting that they escape regulation. Taken together, our results show in the context of a human conformational disorder that the supersaturation of a metastable subproteome underlies widespread aggregation and correlates with the histopathological state of the tissue.

9.
J Phys Chem Lett ; 10(24): 7872-7877, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31790267

RESUMO

The deposition of coassemblies made of the small presynaptic protein, α-synuclein, and lipids in the brains of patients is the hallmark of Parkinson's disease. In this study, we used natural abundance 13C and 31P magic-angle spinning nuclear magnetic resonance spectroscopy together with cryo-electron microscopy and differential scanning calorimetry to characterize the fibrils formed by α-synuclein in the presence of vesicles made of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine or 1,2-dilauroyl-sn-glycero-3-phospho-L-serine. Our results show that these lipids coassemble with α-synuclein molecules to give thin and curly amyloid fibrils. The coassembly leads to slower and more isotropic reorientation of lipid molecular segments and a decrease in both the temperature and enthalpy of the lipid chain-melting compared with those in the protein-free lipid lamellar phase. These findings provide new insights into the properties of lipids within protein-lipid assemblies that can be associated with Parkinson's disease.


Assuntos
Amiloide/química , Bicamadas Lipídicas/química , alfa-Sinucleína/química , Cinética , Estrutura Molecular , Transição de Fase , Ligação Proteica , Serina/química , Relação Estrutura-Atividade , Termodinâmica , Temperatura de Transição
10.
Heliyon ; 5(11): e02589, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768427

RESUMO

Neurodegenerative disorders progress across the brain in characteristic spatio-temporal patterns. A better understanding of the factors underlying the specific cell and tissue vulnerability responsible for such patterns could help identify the molecular origins of these conditions. To investigate these factors, based on the observation that neurodegenerative disorders are closely associated with the presence of aberrant protein deposits, we made the hypothesis that the vulnerability of cells and tissues is associated to the overall levels of supersaturated proteins, which are those most metastable against aggregation. By analyzing single-cell transcriptomic and subcellular proteomics data on healthy brains of ages much younger than those typical of disease onset, we found that the most supersaturated proteins are enriched in cells and tissues that succumb first to neurodegeneration. Then, by focusing the analysis on a metastable subproteome specific to Alzheimer's disease, we show that it is possible to recapitulate the pattern of disease progression using data from healthy brains. We found that this metastable subproteome is significantly enriched for synaptic processes and mitochondrial energy metabolism, thus rendering the synaptic environment dangerous for aggregation. The present identification of protein supersaturation as a signature of cell and tissue vulnerability in neurodegenerative disorders could facilitate the search for effective treatments by providing clearer points of intervention.

11.
Adv Exp Med Biol ; 1174: 1-33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31713195

RESUMO

The aggregation of proteins into fibrillar structures is a central process implicated in the onset and development of several devastating neuro-degenerative diseases, but can, in contrast to these pathological roles, also fulfil important biological functions. In both scenarios, an understanding of the mechanisms by which soluble proteins convert to their fibrillar forms represents a fundamental objective for molecular sciences. This chapter details the different classes of microscopic processes responsible for this conversion and discusses how they can be described by a mathematical formulation of the aggregation kinetics. We present easily accessible experimental quantities that allow the determination of the dominant pathways of aggregation, as well as a general strategy to obtain detailed solutions to the kinetic rate laws that yield the microscopic rate constants of the individual processes of nucleation and growth. This chapter discusses a framework for a structured approach to address key questions regarding the dynamics of protein aggregation and shows how the use of chemical kinetics to tackle complex biophysical systems can lead to a deeper understanding of the underlying physical and chemical principles.


Assuntos
Fenômenos Biofísicos , Peptídeos , Cinética , Peptídeos/química , Peptídeos/metabolismo , Agregação Patológica de Proteínas , Proteínas/química , Proteínas/metabolismo
12.
Sci Adv ; 5(10): eaax5108, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663025

RESUMO

Protein misfolding and aggregation are associated with a many human disorders, including Alzheimer's and Parkinson's diseases. Toward increasing the effectiveness of early-stage drug discovery for these conditions, we report a bacterial platform that enables the biosynthesis of molecular libraries with expanded diversities and their direct functional screening for discovering protein aggregation inhibitors. We illustrate this approach by performing, what is to our knowledge, the largest functional screen of small-size molecular entities described to date. We generated a combinatorial library of ~200 million drug-like, cyclic peptides and rapidly screened it for aggregation inhibitors against the amyloid-ß peptide (Aß42), linked to Alzheimer's disease. Through this procedure, we identified more than 400 macrocyclic compounds that efficiently reduce Aß42 aggregation and toxicity in vitro and in vivo. Finally, we applied a combination of deep sequencing and mutagenesis analyses to demonstrate how this system can rapidly determine structure-activity relationships and define consensus motifs required for bioactivity.

13.
Biochemistry ; 58(39): 4086-4095, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529970

RESUMO

TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol.

14.
Sci Rep ; 9(1): 13528, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537834

RESUMO

We describe an NMR approach based on the measurement of residual dipolar couplings (RDCs) to probe the structural and motional properties of the dynamic regions of the ribosome. Alignment of intact 70S ribosomes in filamentous bacteriophage enabled measurement of RDCs in the mobile C-terminal domain (CTD) of the stalk protein bL12. A structural refinement of this domain using the observed RDCs did not show large changes relative to the isolated protein in the absence of the ribosome, and we also found that alignment of the CTD was almost independent of the presence of the core ribosome particle, indicating that the inter-domain linker has significant flexibility. The nature of this linker was subsequently probed in more detail using a paramagnetic alignment strategy, which revealed partial propagation of alignment between neighbouring domains, providing direct experimental validation of a structural ensemble previously derived from SAXS and NMR relaxation measurements. Our results demonstrate the prospect of better characterising dynamical and functional regions of more challenging macromolecular machines and systems, for example ribosome-nascent chain complexes.

15.
ACS Cent Sci ; 5(8): 1417-1424, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31482124

RESUMO

Protein behavior is closely regulated by a plethora of post-translational modifications (PTMs). It is therefore desirable to develop approaches to design rational PTMs to modulate specific protein functions. Here, we report one such method, and we illustrate its successful implementation by potentiating the anti-aggregation activity of a molecular chaperone. Molecular chaperones are a multifaceted class of proteins essential to protein homeostasis, and one of their major functions is to combat protein misfolding and aggregation, a phenomenon linked to a number of human disorders. In this work, we conjugated a small-molecule inhibitor of the aggregation of α-synuclein, a process associated with Parkinson's disease (PD), to a specific cysteine residue on human Hsp70, a molecular chaperone with five free cysteines. We show that this regioselective conjugation augments in vitro the anti-aggregation activity of Hsp70 in a synergistic manner. This Hsp70 variant also displays in vivo an enhanced suppression of α-synuclein aggregation and its associated toxicity in a Caenorhabditis elegans model of PD.

16.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389332

RESUMO

Removing or preventing the formation of [Formula: see text]-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end, we have engineered the [Formula: see text]-wrapin AS69 to bind monomeric [Formula: see text]-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of [Formula: see text]-synuclein and formation of visible [Formula: see text]-synuclein aggregates. In flies, AS69 reduced [Formula: see text]-synuclein aggregates and the locomotor deficit resulting from [Formula: see text]-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-[Formula: see text]-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.


Assuntos
Amiloide/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/metabolismo , Células HEK293 , Humanos , Agregação Patológica de Proteínas , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes/genética
17.
ACS Chem Neurosci ; 10(8): 3464-3478, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31313906

RESUMO

The formation of misfolded protein oligomers during early stages of amyloid aggregation and the activation of neuroinflammatory responses are two key events associated with neurodegenerative diseases. Although it has been established that misfolded oligomers are involved in the neuroinflammatory process, the links between their structural features and their functional effects on the immune response remain unknown. To explore such links, we took advantage of two structurally distinct soluble oligomers (type A and B) of protein HypF-N and compared the elicited microglial inflammatory responses. By using confocal microscopy, protein pull-down, and high-throughput mass spectrometry, we found that, even though both types bound to a common pool of microglial proteins, type B oligomers-with a lower solvent-exposed hydrophobicity-showed enhanced protein binding, correlating with the observed inflammatory response. Furthermore, the interactome associated with inflammatory-mediated neurodegeneration revealed previously unidentified receptors and signaling molecules likely to be involved in the oligomer-elicited innate immune response.

18.
Trends Biochem Sci ; 44(11): 914-926, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31301980

RESUMO

Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.

19.
ACS Chem Biol ; 14(7): 1628-1636, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31246415

RESUMO

The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson's and Huntington's diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Peptídeos/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Envelhecimento , Amiloide/química , Amiloide/metabolismo , Animais , Proteínas de Caenorhabditis elegans/análise , Imagem Óptica , Peptídeos/análise , alfa-Sinucleína/análise
20.
PLoS One ; 14(5): e0217746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150491

RESUMO

Although the aggregation of the amyloid-ß peptide (Aß) into amyloid fibrils is a well-established hallmark of Alzheimer's disease, the complex mechanisms linking this process to neurodegeneration are still incompletely understood. The nematode worm C. elegans is a valuable model organism through which to study these mechanisms because of its simple nervous system and its relatively short lifespan. Standard Aß-based C. elegans models of Alzheimer's disease are designed to study the toxic effects of the overexpression of Aß in the muscle or nervous systems. However, the wide variety of effects associated with the tissue-level overexpression of Aß makes it difficult to single out and study specific cellular mechanisms related to the onset of Alzheimer's disease. Here, to better understand how to investigate the early events affecting neuronal signalling, we created a C. elegans model expressing Aß42, the 42-residue form of Aß, from a single-copy gene insertion in just one pair of glutamatergic sensory neurons, the BAG neurons. In behavioural assays, we found that the Aß42-expressing animals displayed a subtle modulation of the response to CO2, compared to controls. Ca2+ imaging revealed that the BAG neurons in young Aß42-expressing nematodes were activated more strongly than in control animals, and that neuronal activation remained intact until old age. Taken together, our results suggest that Aß42-expression in this very subtle model of AD is sufficient to modulate the behavioural response but not strong enough to generate significant neurotoxicity, suggesting that slightly more aggressive perturbations will enable effectively studies of the links between the modulation of a physiological response and its associated neurotoxicity.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Fragmentos de Peptídeos/genética , Células Receptoras Sensoriais/metabolismo , Doença de Alzheimer/patologia , Amiloide , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Células Receptoras Sensoriais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA