Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viral Immunol ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31687902

RESUMO

Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.

2.
Science ; 366(6464): 454-460, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31624095

RESUMO

We present histological and molecular analyses of the developing human cerebellum from 30 days after conception to 9 months after birth. Differences in developmental patterns between humans and mice include spatiotemporal expansion of both ventricular and rhombic lip primary progenitor zones to include subventricular zones containing basal progenitors. The human rhombic lip persists longer through cerebellar development than in the mouse and undergoes morphological changes to form a progenitor pool in the posterior lobule, which is not seen in other organisms, not even in the nonhuman primate the macaque. Disruptions in human rhombic lip development are associated with posterior cerebellar vermis hypoplasia and Dandy-Walker malformation. The presence of these species-specific neural progenitor populations refines our insight into human cerebellar developmental disorders.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31643139

RESUMO

The common genes responsible for overgrowth syndromes play key roles in regulating transcription through histone modification and chromatin modeling. The SETD2 gene encoding a H3K36 trimethyltransferase is implicated in Sotos-like syndrome. This syndrome is characterized by postnatal overgrowth, macrocephaly, obesity, speech delay, and advanced carpal ossification. We report four new patients with constitutional SETD2 mutations and review nine earlier reported patients. Almost all patients presented with macrocephaly associated with advanced stature and obesity in half of the cases. In addition to these principal manifestations, neurodevelopmental disorders are common such as intellectual disability (83%), autism spectrum disorders (89%), and behavioral difficulties (100%) with aggressive outbursts (83%). A variety of features such as joint hypermobility (29%), hirsutism (33%), and naevi (50%) were also reported. Constitutional SETD2 mutations are intragenic loss-of-function variants with truncating (69%) and missense (31%) mutations. Functional studies are necessary to improve understanding of the pathogenicity of some missense SETD2 mutations.

4.
Nat Genet ; 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570889

RESUMO

Hypopigmentation along Blaschko's lines is a hallmark of a poorly defined group of mosaic syndromes whose genetic causes are unknown. Here we show that postzygotic inactivating mutations of RHOA cause a neuroectodermal syndrome combining linear hypopigmentation, alopecia, apparently asymptomatic leukoencephalopathy, and facial, ocular, dental and acral anomalies. Our findings pave the way toward elucidating the etiology of pigmentary mosaicism and highlight the role of RHOA in human development and disease.

6.
Am J Med Genet A ; 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31660690

RESUMO

Polymicrogyria (PMG) is a heterogeneous brain malformation that may result from prenatal vascular disruption or infection, or from numerous genetic causes that still remain difficult to identify. We identified three unrelated patients with polymicrogyria and duplications of chromosome 2p, defined the smallest region of overlap, and performed gene pathway analysis using Cytoscape. The smallest region of overlap in all three children involved 2p16.1-p16.3. All three children have bilateral perisylvian polymicrogyria (BPP), intrauterine and postnatal growth deficiency, similar dysmorphic features, and poor feeding. Two of the three children had documented intellectual disability. Gene pathway analysis suggested a number of developmentally relevant genes and gene clusters that were over-represented in the critical region. We narrowed a rare locus for polymicrogyria to a region of 2p16.1-p16.3 that contains 33-34 genes, 23 of which are expressed in cerebral cortex during human fetal development. Using pathway analysis, we showed that several of the duplicated genes contribute to neurodevelopmental pathways including morphogen, cytokine, hormonal and growth factor signaling, regulation of cell cycle progression, cell morphogenesis, axonal guidance, and neuronal migration. These findings strengthen the evidence for a novel locus associated with polymicrogyria on 2p16.1-p16.3, and comprise the first step in defining the underlying genetic etiology.

7.
Am J Hum Genet ; 105(4): 844-853, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585108

RESUMO

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.

8.
Neurology ; 93(14): e1360-e1373, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31484711

RESUMO

OBJECTIVE: To better evaluate the imaging spectrum of subcortical heterotopic gray matter brain malformations (subcortical heterotopia [SUBH]), we systematically reviewed neuroimaging and clinical data of 107 affected individuals. METHODS: SUBH is defined as heterotopic gray matter, located within the white matter between the cortex and lateral ventricles. Four large brain malformation databases were searched for individuals with these malformations; data on imaging, clinical outcomes, and results of molecular testing were systematically reviewed and integrated with all previously published subtypes to create a single classification system. RESULTS: Review of the databases revealed 107 patients with SUBH, the large majority scanned during childhood (84%), including more than half before 4 years (59%). Although most individuals had cognitive or motor disability, 19% had normal development. Epilepsy was documented in 69%. Additional brain malformations were common and included abnormalities of the corpus callosum (65/102 [64%]), and, often, brainstem or cerebellum (47/106 [44%]). Extent of the heterotopic gray matter brain malformations (unilateral or bilateral) did not influence the presence or age at onset of seizures. Although genetic testing was not systematically performed in this group, the sporadic occurrence and frequent asymmetry suggests either postzygotic mutations or prenatal disruptive events. Several rare, bilateral forms are caused by mutations in genes associated with cell proliferation and polarity (EML1, TUBB, KATNB1, CENPJ, GPSM2). CONCLUSION: This study reveals a broad clinical and imaging spectrum of heterotopic malformations and provides a framework for their classification.

9.
Am J Hum Genet ; 105(4): 689-705, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495489

RESUMO

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.

11.
Am J Hum Genet ; 105(3): 606-615, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474318

RESUMO

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.

12.
JCI Insight ; 4(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536475

RESUMO

Lymphatic malformations (LMs) are congenital, nonneoplastic vascular malformations associated with postzygotic activating PIK3CA mutations. The mutation spectrum within LMs is narrow, with the majority having 1 of 3 hotspot mutations. Despite this relative genetic homogeneity, clinical presentations differ dramatically. We used molecular inversion probes and droplet digital polymerase chain reaction to perform deep, targeted sequencing of PIK3CA in 271 affected and unaffected tissue samples from 81 individuals with isolated LMs and retrospectively collected clinical data. Pathogenic PIK3CA mutations were identified in affected LM tissue in 64 individuals (79%) with isolated LMs, with variant allele fractions (VAFs) ranging from 0.1% to 13%. Initial analyses revealed no correlation between VAF and phenotype variables. Recognizing that different mutations activate PI3K to varying degrees, we developed a metric, the genotype-adjusted VAF (GVAF), to account for differences in mutation strength, and found significantly higher GVAFs in LMs with more severe clinical characteristics including orofacial location or microcystic structure. In addition to providing insight into LM pathogenesis, we believe GVAF may have broad applicability for genotype-phenotype analyses in mosaic disorders.

13.
Artigo em Inglês | MEDLINE | ID: mdl-31441589

RESUMO

Megalencephaly (MEG) is a developmental abnormality of brain growth characterized by early onset, often progressive, brain overgrowth. Focal forms of megalencephaly associated with cortical dysplasia, such as hemimegalencephaly and focal cortical dysplasia, are common causes of focal intractable epilepsy in children. The increasing use of high throughput sequencing methods, including high depth sequencing to more accurately detect and quantify mosaic mutations, has allowed us to identify the molecular etiologies of many MEG syndromes, including most notably the PI3K-AKT-MTOR related MEG disorders. Thorough molecular and clinical characterization of affected individuals further allow us to derive preliminary genotype-phenotype correlations depending on the gene, mutation, level of mosaicism, and tissue distribution. Our review of published data on these disorders so far shows that mildly activating variants (that are typically constitutional or germline) are associated with diffuse megalencephaly with intellectual disability and/or autism spectrum disorder; moderately activating variants (that are typically high-level mosaic) are associated with megalencephaly with pigmentary abnormalities of the skin; and strongly activating variants (that are usually very low-level mosaic) are associated with focal brain malformations including hemimegalencephaly and focal cortical dysplasia. Accurate molecular diagnosis of these disorders is undoubtedly crucial to more optimally treat children with these disorders using PI3K-AKT-MTOR pathway inhibitors.

14.
Am J Hum Genet ; 105(3): 640-657, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402090

RESUMO

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.

15.
Am J Hum Genet ; 105(2): 413-424, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327508

RESUMO

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.

16.
Am J Hum Genet ; 104(5): 968-976, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31031011

RESUMO

The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor ß gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.

17.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817854

RESUMO

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.

18.
Brain ; 142(4): 867-884, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879067

RESUMO

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.

19.
Eur J Med Genet ; : 103624, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30690204

RESUMO

The Na+/K+- ATPase acts as an ion pump maintaining the essential plasma membrane potential in all mammalian cell types, and is essential for many cellular functions. There are four α isoforms (α1, α2, α3 and α4) with distinct expression patterns, kinetic properties and substrate affinity. The α2-isoform is encoded by ATP1A2 and evidence supports its utmost importance in Cl- homeostasis in neurons, and in the function of respiratory neurons at birth. Monallelic pathogenic variants in ATP1A2 are associated with familial hemiplegic migraine type 2 (FHM2) and on rare occasions with alternating hemiplegia of childhood 1 (AHC1). To date, no instances of biallelic loss of function variants have been reported in humans. However, Atp1a2 homozygous loss of function knockout mice (α2-/- mice) show severe motor deficits, with lack of spontaneous movements, and are perinatally lethal due to absent respiratory activity. In this report we describe three newborns from two unrelated families, who died neonatally, presenting in utero with an unusual form of fetal hydrops, seizures and polyhydramnios. At birth they had multiple joint contractures (e.g. arthrogryposis), microcephaly, malformations of cortical development, dysmorphic features and severe respiratory insufficiency. Biallelic loss of function variants in ATP1A2, predicted to be pathogenic were found on whole exome sequencing. We propose that this is a distinctive new syndrome caused by complete absence of Na+/K+- ATPase α2-isoform expression.

20.
Am J Med Genet C Semin Med Genet ; 178(4): 414-422, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30580480

RESUMO

Oculocerebrocutaneous syndrome (OCCS) is a rare disorder characterized primarily by congenital skin, eye, and brain anomalies. The most distinctive findings are hypoplastic or aplastic skin defects; pedunculated, typically hamartomatous, or nodular skin appendages; cystic microphthalmia; and a combination of forebrain anomalies and a specific mid-hindbrain malformation. Based on a review of 40 patients with OCCS, existing clinical criteria have been revised. Because of the asymmetric and patchy distribution of features, lack of recurrence in families, male preponderance and completely skewed X-inactivation in one female, OCCS is hypothesized to result from postzygotic mosaic variants in an X-linked gene. Whole exome and genome sequencing on blood DNA in two patients failed to identify pathogenic variants so far. In view of the overlapping features, in particular of the brain, of OCCS and Aicardi syndrome, both may be pathogenetically related or even result from different variants in the same gene. For the elucidation of the cause of OCCS, exome or genome sequencing on multiple lesional tissues is the primary goal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA