Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774550

RESUMO

Knowledge of how disturbances such as fire shape habitat structure and composition, and affect animal interactions, is fundamental to ecology and ecosystem management. Predators also exert strong effects on ecological communities, through top-down regulation of prey and competitors, which can result in trophic cascades. Despite their ubiquity, ecological importance and potential to interact with fire, our general understanding of how predators respond to fire remains poor, hampering ecosystem management. To address this important knowledge gap, we conducted a systematic review and meta-analysis of the effects of fire on terrestrial, vertebrate predators world-wide. We found 160 studies spanning 1978-2018. There were 36 studies with sufficient information for meta-analysis, from which we extracted 96 effect sizes (Hedges' g) for 67 predator species relating to changes in abundance indices, occupancy or resource selection in burned and unburned areas, or before and after fire. Studies spanned geographic locations, taxonomic families and study designs, but most were located in North America and Oceania (59% and 24%, respectively), and largely focussed on felids (24%) and canids (25%). Half (50%) of the studies reported responses to wildfire, and nearly one third concerned prescribed (management) fires. There were no clear, general responses of predators to fire, nor relationships with geographic area, biome or life-history traits (e.g. body mass, hunting strategy and diet). Responses varied considerably between species. Analysis of species for which at least three effect sizes had been reported in the literature revealed that red foxes Vulpes vulpes mostly responded positively to fire (e.g. higher abundance in burned compared to unburned areas) and eastern racers Coluber constrictor negatively, with variances overlapping zero only slightly for both species. Our systematic review and meta-analysis revealed strong variation in predator responses to fire, and major geographic and taxonomic knowledge gaps. Varied responses of predator species to fire likely depend on ecosystem context. Consistent reporting of ongoing monitoring and management experiments is required to improve understanding of the mechanisms driving predator responses to fire, and any broader effects (e.g. trophic interactions). The divergent responses of species in our study suggest that adaptive, context-specific management of predator-fire relationships is required.

2.
Zootaxa ; 4564(1): zootaxa.4564.1.6, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-31716519

RESUMO

The taxonomic status and systematic nomenclature of the Australian dingo remain contentious, resulting in decades of inconsistent applications in the scientific literature and in policy. Prompted by a recent publication calling for dingoes to be considered taxonomically as domestic dogs (Jackson et al. 2017, Zootaxa 4317, 201-224), we review the issues of the taxonomy applied to canids, and summarise the main differences between dingoes and other canids. We conclude that (1) the Australian dingo is a geographically isolated (allopatric) species from all other Canis, and is genetically, phenotypically, ecologically, and behaviourally distinct; and (2) the dingo appears largely devoid of many of the signs of domestication, including surviving largely as a wild animal in Australia for millennia. The case of defining dingo taxonomy provides a quintessential example of the disagreements between species concepts (e.g., biological, phylogenetic, ecological, morphological). Applying the biological species concept sensu stricto to the dingo as suggested by Jackson et al. (2017) and consistently across the Canidae would lead to an aggregation of all Canis populations, implying for example that dogs and wolves are the same species. Such an aggregation would have substantial implications for taxonomic clarity, biological research, and wildlife conservation. Any changes to the current nomen of the dingo (currently Canis dingo Meyer, 1793), must therefore offer a strong, evidence-based argument in favour of it being recognised as a subspecies of Canis lupus Linnaeus, 1758, or as Canis familiaris Linnaeus, 1758, and a successful application to the International Commission for Zoological Nomenclature - neither of which can be adequately supported. Although there are many species concepts, the sum of the evidence presented in this paper affirms the classification of the dingo as a distinct taxon, namely Canis dingo.


Assuntos
Canidae , Lobos , Animais , Austrália , Cães , Filogenia
3.
Biol Rev Camb Philos Soc ; 94(3): 981-998, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30565370

RESUMO

Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire-prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer-term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire-prone ecosystems.


Assuntos
Ecossistema , Fogo , Atividade Motora , Animais , Conservação dos Recursos Naturais , Dinâmica Populacional
4.
Trends Ecol Evol ; 33(11): 809-812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30243834

RESUMO

Conservation targets perform beneficial auxiliary functions that are rarely acknowledged, including raising awareness, building partnerships, promoting investment, and developing new knowledge. Building on these auxiliary functions could enable more rapid progress towards current targets and inform the design of future targets.


Assuntos
Conservação dos Recursos Naturais/métodos , Políticas , Conservação dos Recursos Naturais/economia , Política , Opinião Pública
5.
Glob Ecol Biogeogr ; 27(7): 760-786, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30147447

RESUMO

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL.

6.
Nat Ecol Evol ; 2(5): 775-781, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29581587

RESUMO

The Convention on Biological Diversity and its Strategic Plan for Biodiversity 2011-2020 form the central pillar of the world's conservation commitment, with 196 signatory nations; yet its capacity to reign in catastrophic biodiversity loss has proved inadequate. Indicators suggest that few of the Convention on Biological Diversity's Aichi targets that aim to reduce biodiversity loss will be met by 2020. While the indicators have been criticized for only partially representing the targets, a bigger problem is that the indicators do not adequately draw attention to and measure all of the drivers of the biodiversity crisis. Here, we show that many key drivers of biodiversity loss are either poorly evaluated or entirely lacking indicators. We use a biodiversity-crisis hierarchy as a conceptual model linking drivers of change to biodiversity loss to evaluate the scope of current indicators. We find major gaps related to monitoring governments, human population size, corruption and threat-industries. We recommend the hierarchy is used to develop an expanded set of indicators that comprehensively monitor the human behaviour and institutions that drive biodiversity loss and that, so far, have impeded progress towards achieving global biodiversity targets.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Modelos Biológicos
7.
Proc Biol Sci ; 285(1870)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29298935

RESUMO

Habitat conversion in production landscapes is among the greatest threats to biodiversity, not least because it can disrupt animal movement. Using the movement ecology framework, we review animal movement in production landscapes, including areas managed for agriculture and forestry. We consider internal and external drivers of altered animal movement and how this affects navigation and motion capacities and population dynamics. Conventional management approaches in fragmented landscapes focus on promoting connectivity using structural changes in the landscape. However, a movement ecology perspective emphasizes that manipulating the internal motivations or navigation capacity of animals represents untapped opportunities to improve movement and the effectiveness of structural connectivity investments. Integrating movement and landscape ecology opens new opportunities for conservation management in production landscapes.


Assuntos
Agricultura , Migração Animal , Conservação dos Recursos Naturais , Florestas , Animais , Biodiversidade , Ecossistema , Humanos , Dinâmica Populacional , Dispersão de Sementes
8.
Trends Ecol Evol ; 33(3): 147-148, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274664

Assuntos
Ecossistema
9.
Proc Natl Acad Sci U S A ; 113(40): 11261-11265, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27638204

RESUMO

Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.


Assuntos
Biodiversidade , Internacionalidade , Espécies Introduzidas , Comportamento Predatório/fisiologia , Animais , Evolução Biológica , Aves , Espécies em Perigo de Extinção , Geografia , Mamíferos , Modelos Biológicos , Répteis , Especificidade da Espécie
11.
PLoS One ; 10(5): e0127925, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992802

RESUMO

Reptiles in urban remnants are threatened with extinction by increased fire frequency, habitat fragmentation caused by urban development, and competition and predation from exotic species. Understanding how urban reptiles respond to and recover from such disturbances is key to their conservation. We monitored the recovery of an urban reptile community for five years following a summer wildfire at Kings Park in Perth, Western Australia, using pitfall trapping at five burnt and five unburnt sites. The reptile community recovered rapidly following the fire. Unburnt sites initially had higher species richness and total abundance, but burnt sites rapidly converged, recording a similar total abundance to unburnt areas within two years, and a similar richness within three years. The leaf-litter inhabiting skink Hemiergis quadrilineata was strongly associated with longer unburnt sites and may be responding to the loss of leaf litter following the fire. Six rarely-captured species were also strongly associated with unburnt areas and were rarely or never recorded at burnt sites, whereas two other rarely-captured species were associated with burnt sites. We also found that one lizard species, Ctenotus fallens, had a smaller average body length in burnt sites compared to unburnt sites for four out of the five years of monitoring. Our study indicates that fire management that homogenises large areas of habitat through frequent burning may threaten some species due to their preference for longer unburnt habitat. Careful management of fire may be needed to maximise habitat suitability within the urban landscape.


Assuntos
Cidades , Conservação dos Recursos Naturais , Ecossistema , Fogo , Répteis/fisiologia , Estações do Ano , Análise de Variância , Animais , Biodiversidade , Distribuição de Qui-Quadrado , Geografia , Répteis/anatomia & histologia , Especificidade da Espécie , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA