Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(4): 1425-1434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936123

RESUMO

The need for high-quality dietary proteins has risen over the years with improvements in the quality of life. Deep eutectic solvents (DESs) have been regarded as potential green alternatives to conventional organic solvents for protein extraction from press cake biomass, meeting the needs of sustainable development goals. Sacha inchi seed meal (SIM) is generated as a by-product of the seed oil extraction industries containing high protein content. The current study presents a novel ultrasound assisted DES method for the extraction of SIM protein in a sequential manner. Four different DESs were screened, out of which choline chloride (ChCl)/glycerol (1:2) gave promising results in protein recovery and was further selected. The sequential ultrasound-ChCl/glycerol could effectively extract high total crude protein content (77.43%) from SIM biomass compared to alone ultrasound (29.21%) or ChCl/glycerol (58.32%) treatment strategies. The SIM protein extracted from ultrasound-ChCl/glycerol exhibited high solubility (94.39%) at alkaline pH and highest in vitro digestibility (71.16%) by digestive enzymes (pepsin and trypsin). The protein characterization by SDS-PAGE and FTIR elucidated the structural properties and presence of different functional groups of SIM protein. Overall, the sequential ultrasound-ChCl/glycerol revealed its significant potential for one-step biorefining of the waste Sacha inchi meal biomass for circular bioeconomy.

2.
J Food Sci Technol ; 60(3): 1054-1064, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908337

RESUMO

Bacterial cellulose (BC) has attracted worldwide attention owing to its tremendous properties and versatile applications. BC has huge market demand, however; its production is still limited hence important to explore the economically and technically feasible bioprocess for its improved production. The current study is based on improving the bioprocess for BC production employing Komagataeibacter europeaus 14148. Physico-chemical parameters have been optimized e.g., initial pH, incubation temperature, incubation period, inoculum size, and carbon source for maximum BC production. The study employed crude and/or a defined carbon source in the production medium. Hestrin and Schramm (HS) medium was used for BC production with initial pH 5.5 at 30 °C after 7 days of incubation under static conditions. The yield of BC obtained from fruit juice extracted from orange, papaya, mango and banana were higher than other sugars employed. The maximum BC yield of 3.48 ± 0.16 g/L was obtained with papaya extract having 40 g/L reducing sugar concentration and 3.47 ± 0.05 g/L BC was obtained with orange extract having 40 g/L reducing sugar equivalent in the medium. BC yield was about three-fold higher than standard HS medium. Fruit extracts can be employed as sustainable and economic substrates for BC production to replace glucose and fructose. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05451-y.

3.
J Food Sci Technol ; 60(3): 1045-1053, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908344

RESUMO

Old preserved radish (OPR), a traditional pickled-food of Asia, contains the healthy bioactive compounds, such as phenols and flavonoids. To preserve the phenols levels in radish by thermal treatment, which are decreased due to the polyphenol oxidase activity during long storage. Range of thermal processing evaluated to retain the maximum phenols level in the radish while processed at temperatures of 70 °C, 80 °C and 90 °C for 30 days. In this study, the bioactive compounds and antioxidant activity of thermal processing radish (TPR) were evaluated and compared with commercial products of OPR. Results showed the best condition of thermal processing, 80°C for 30 days, could increase the values of phenols, flavonoids and antioxidant activity that were 2.27, 2.74 and 2.89 times, respectively. When comparing the thermally processed radish or TPR with OPR, TPR has a higher content of phenols and flavonoids, indicating that the thermal processing was effective to increase the content of functional compounds in radish and significantly improved its nutritional values.

4.
J Food Sci Technol ; 60(3): 958-965, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908357

RESUMO

Fish bones are the by-products of aquatic and fishery processing, which are often discarded. However, it has been considered having health-promoting by containing many essential nutrients. This study investigates the anti-inflammatory effect of fish bone fermented by Monascus purpureus (FBF) and the NF-κB pathway regulation mechanism in lipopolysaccharides (LPS)-induced RAW 264.7 cells. FBF has inhibited the production of PGE2 (prostaglandin E2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in LPS-induced RAW264.7 cells. The FBF has significantly inhibited mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, FBF has suppressed activation of NF-κB (nuclear factor kappa-B) by increasing IκB mRNA expression and reduced of p65, p50 mRNA expression, as well as nuclear NF-κB DNA binding activity in LPS-induced RAW 246.7 cells. These findings demonstrate that FBF has inhibited LPS-induced inflammation by subsiding the activation of NF-κB in RAW 246.7 cells, implying that FBF could be employed as a promising natural product.

5.
J Food Sci Technol ; 60(3): 1015-1025, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908355

RESUMO

Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 µM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05436-x.

6.
J Food Sci Technol ; 60(3): 1006-1014, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908362

RESUMO

Pacific saury is a primarily wild-caught fish in Taiwan and contains high amounts of polyunsaturated fatty acids (PUFAs). Therefore, its consumption is encouraged by Taiwanese government due to its high nutrition values and affordable price. In this study, four products, Minced saury with pork, Minced saury with XO sauce, Crispy dried saury, and Saury roll with roe, were developed. Optimization of the processing and ingredients were determined by a group of expert panelists, then by a large group of regular consumers. Total bacterial count, coliform, Escherichia coli, volatile base nitrogen, water content, and water activity were analyzed for shelf-life stability. In addition, the indexes of oil oxidation such as acid values, peroxide, and thiobarbituric acid were determined for the oil quality of products. Compositions of fatty acids and fragrant compounds were also analyzed. All microbial, physicochemical, and oil oxidation indexes of the products complied with the official regulations and industrial standards of Taiwan. Composition of fragrant compounds closely related with sensory characteristics and PUFAs composition were not degraded by the processing and storage. A new brand name, Hsiung-Chou, and the logo were established and the products were contracted to manufacturers for commercial production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05432-1.

7.
J Food Sci Technol ; 60(3): 1036-1044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908372

RESUMO

Citrus limon (lemon) possesses immunoregulatory, antioxidant, and lipid-lowering effects. Our previous study showed that lemon fermented products (LFP) which were lemon fermented with Lactobacillus OPC1 had the ability to avert obesity. However, the LFP effects on the pathway of lipid metabolism by gut microbiota were still unclear. This study was aimed to investigate the LFP effects on liver lipid metabolism and gut microbiota in a rat model of obesity caused by a high-calorie diet. LFP effectively reduced the total triglyceride (49.7%) and total cholesterol (53.3%) contents of the liver. Additionally, the mRNA levels of genes related to triglyceride metabolism (SREBP-1c, PPARγ, and ACC), cholesterol metabolism (HMG-CoA reductase, ACAT, and LCAT), and lipid ß-oxidation (PPARα, and CPT-1) were regulated by LFP. Furthermore, LFP reduced the ratio of Firmicutes/Bacteroidetes and enhanced the ratio of Firmicutes Clostridia. Overall, these findings suggested that LFP might use as a potential dietary supplement for preventing obesity by modulating the lipid metabolism and improving the gut microbiota.

8.
Bioresour Technol ; 373: 128711, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773815

RESUMO

In this study, sunflower seed husk biochar prepared by ZnCl2-activated and hydrothermal carbonization (HZSF) was studied for its effectiveness in removing tetracycline (TC) from an aqueous solution. The physical and chemical properties of materials were characterized by different methods of surface analysis. The specific surface area of HZSF is significantly enhanced over 1200 times compared with non-modified biochar (HZSF: 1578.3 m2·g-1, SF-700: 1.3 m2·g-1), which has an enhancement effect on the TC adsorption capacity. The HZSF showed that the Langmuir isotherm and pseudo-second-order kinetic models could properly characterize the adsorption processes. In the Langmuir isotherm model, HZSF exhibited effective adsorption performance with qmax of 673.0 mg·g-1 at 298 K for 24 h. The possible mechanisms for the adsorption process were the monolayer, chemical adsorption, and the participation of strong intermolecular forces. In general, HZSF has the potential to be a useful adsorbent for the elimination of antibiotics from water-based solutions.


Assuntos
Helianthus , Poluentes Químicos da Água , Adsorção , Porosidade , Poluentes Químicos da Água/análise , Tetraciclina , Antibacterianos , Carvão Vegetal/química , Cinética , Sementes/química
9.
Bioresour Technol ; 374: 128768, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36828219

RESUMO

The accumulation of emerging organic contaminants (EOCs) in waste activated sludge (WAS) is a global concern. In this study, a multi-heteroatom nitrogen and sulfur was successfully embedded into lignin-based biochar (N-S-LGBC) and used it to activate calcium peroxide (CP) for the degradation of 4-nonylphenol (4-NP) in WAS. N-S-LGBC/CP was effective in degrading 85 % of 4-NP within 12 h through the activation of CP owing to hydroxyl radicals and singlet oxygen species generated from the synergism among pyrrolic-N, thiophenic-S, and lattice oxygen, i.e., active sites responsible for 4-NP degradation. These results highlight substrate biodegradability for subsequent bioprocesses that improves WAS treatment in EOC degradation by the N-S-LGBC/CP-mediated process. There was abundance of distinct Aggregatilinea genus within the phylum Chloroflexi during N-S-LGBC/CP treatment, indicating high 4-NP pretreatment efficiency in WAS. This work provides a new understanding of N-S-co-doped carbocatalysts in green and sustainable hydroxyl radical-driven carbon advanced oxidation (HR-CAOP) platforms for WAS remediation.


Assuntos
Lignina , Esgotos , Esgotos/química , Peróxidos/química , Carvão Vegetal/química , Metais , Radical Hidroxila
10.
Environ Pollut ; 323: 121247, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764381

RESUMO

Globally, environmental concerns are rapidly growing due to increasing pollution levels. Vanadium is a hazardous heavy metal that poses health issues with an exposure concentration of about 2 ppm. It is regularly discharged by some industries and poses an environmental challenge. There are no sustainable green treatment methods for discharged effluents to mitigate vanadium threats to humans and the environment. In this study, the goal was to develop a green, sustainable method for removing vanadium and to utilize the produced biomass for biofuels, thus offsetting the treatment cost. Microalgae Chlorella sorokiniana SU1 and Picochlorum oklahomensis were employed for vanadium (III) treatment. The maximum removal was 25.5 mg L-1 with biomass and lipid yields of 3.0 g L-1 and 884.4 mg L-1 respectively after 14 days of treatment. The vanadium removal capacity by microalgae was further enhanced up to 2-2.7 folds while optimizing the key parameters, pH, and temperature before removing biomass from the liquid phase. FTIR is used to analyse the reactive groups in algal cell walls to confirm vanadium adsorption and to understand the dominant and quantitative interactions. Zeta potential analysis helps to find out the most suitable pH range to facilitate the ionic bonding of biomass and thus maximum vanadium adsorption. This study addresses regulating external factors for enhancing the removal performance during microalgal biomass harvesting, which significantly enhances the removal of vanadium (III) from the aqueous phase. This strategy aims to improve the removal efficiency of microalgal treatment at an industrial scale for the bioremediation of vanadium and other inorganic pollutants.


Assuntos
Chlorella , Microalgas , Humanos , Vanádio , Águas Residuárias , Biodegradação Ambiental , Biomassa
11.
Environ Pollut ; 319: 120999, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608728

RESUMO

In the continual march to a predominantly urbanized civilization, anthropogenic activities have increased scrupulously, industrialization have occurred, economic growth has increased, and natural resources are being exploited, causing huge waste management problems, disposal issues, and the evolution of several pollutants. In order to have a sustainable environment, these pollutants need to be removed and degraded. Bioremediation employing microorganisms or enzymes can be used to treat the pollutants by degrading and/or transforming the pollutants into different form which is less or non-toxic to the environment. Laccase is a diverse enzyme/biocatalyst belonging to the oxidoreductase group of enzymes produced by microorganisms. Due to its low substrate specificity and monoelectronic oxidation of substrates in a wide range of complexes, it is most commonly used to degrade chemical pollutants. For degradation of emerging pollutants, laccase can be efficiently employed; however, large-scale application needs reusability, thermostability, and operational stability which necessitated strategies like immobilization and engineering of robust laccase possessing desirable properties. Immobilization of laccase for bioremediation, and treatment of wastewater for degrading emerging pollutants have been focussed for sustainable development. Challenges of employing biocatalysts for these applications as well as engineering robust laccase have been highlighted in this study.


Assuntos
Poluentes Ambientais , Lacase/química , Águas Residuárias , Eliminação de Resíduos Líquidos , Enzimas Imobilizadas/metabolismo , Biodegradação Ambiental
12.
Crit Rev Biotechnol ; : 1-20, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658718

RESUMO

As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.

13.
Bioresour Technol ; 370: 128583, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610481

RESUMO

Present study focused on optimizing bioprocess condition for microalgal lutein production. From previous baseline yields of biomass (3.46 g/L) and lutein (13.7 mg/g), this study examined few key parameters. The 3X:3X ratio macro- and micronutrients was the most affecting parameter with highest biomass and lutein yields of 4.61 g/L and 14.3 mg/g. Temperature 30 °C enhanced the lutein up to 17.3 mg/g but reduced the biomass to 3 g/L. The light effects study showed 10 k lux was most effective for lutein up to 14 mg/g, and effect of increasing salinity (25-75 %) was detrimental. All the above parameters' optimization resulted in a lipid content of 22.5-26.5 %. A maximum lutein productivity and yield of 0.451 mg/L/d and 65.74 mg/L with a 3X:3X macro- and micronutrient ratio was achieved. The Chlorella sorokiniana Kh12 strain exhibited one of the highest yields among recent reports; hence it could be a source for commercial lutein production.


Assuntos
Chlorella , Microalgas , Luteína , Biomassa , Temperatura
14.
Bioresour Technol ; 371: 128593, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36634881

RESUMO

In recent years, the unnecessary overuse of antibiotics has increased globally, resulting in antibiotic contamination of water, which has become a significant environmental concern. This study aims to examine the adsorption behavior of antibiotics (Tetracycline TC, Ciprofloxacin CIP, Ibuprofen IBP, and Sulfamethoxazole SMX) onto H3PO4-activated sunflower seed husk biochar (PSF). The results demonstrated that H3PO4 could enhance the specific surface area (378.8 m2/g) and create a mesoporous structure of biochar. The adsorption mechanism was investigated using kinetic models, isotherms, and thermodynamics. The maximum adsorption capacities (qmax) of TC, CIP, SMX, and IBP are 429.3, 361.6, 251.3, and 251.1 mg g-1, respectively. The adsorption mechanism of antibiotics on PSF was governed by complex mechanisms, including chemisorption, external diffusion, and intraparticle diffusion. This research provides an environmentally friendly method for utilizing one of the agricultural wastes for the removal of a variety of antibiotics from the aquatic environment.


Assuntos
Helianthus , Poluentes Químicos da Água , Antibacterianos , Adsorção , Carvão Vegetal/química , Sulfametoxazol , Poluentes Químicos da Água/análise , Cinética
15.
Bioresour Technol ; 372: 128673, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702322

RESUMO

This study synthesized dual heteroatom nitrogen and boron-co-doped lignin-based biochar (NB-LGBC) for calcium peroxide (CP) activation to enhance the removal of organic micropollutants (OMPs), namely, 4-nonylphenol (4-NP) from waste activated sludge (WAS). NB-LGBC/CP enhanced 4-NP degradation by arriving at 83 % removal in 12 h. The NB-LGBC/CP system degraded 4-NP via a synergistic interaction (HO•, O2•- radicals, and singlet oxygen) and electron transfer due to the N-B-C bonding configurations. Results of fluorescence excitation-emission matrix (FEEM) analysis revealed significantly increase in biodegradable organics from treated WAS mixture. NB-LGBC/CP treatment enriched alkaliphilic bacterium associated with the predominance of the genus Desulfonatronum within the phylum Proteobacteria in the WAS, which improved the biological treatment capacity of 4-NP. Thus, NB-LGBC in HR-CAOP will be a novel approach for WAS decontamination.


Assuntos
Boro , Esgotos , Lignina , Nitrogênio/química , Descontaminação , Carvão Vegetal/química
16.
Sci Total Environ ; 861: 160560, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36574559

RESUMO

The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.


Assuntos
Biocombustíveis , Lignina , Biomassa , Tecnologia
17.
Bioresour Technol ; 370: 128524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572160

RESUMO

Capacitive deionization (CDI) has been considered as an efficient, energy-saving and environmental friendly technology for water treatment. For the practical application of CDI, high-performance electrode materials beyond standard activated carbon should be developed. In this study, biochar derived from brown algae Sargassum hemiphyllum prepared by pyrolysis at 300-700 °C and then used as the CDI electrode to remove Cu(II) from aqueous solutions. According to the findings, the optimal pyrolysis temperature was 700 °C, and the electrosorption capacity of BAB700 was 75-120 mg·g-1 at an applied voltage of 1.2 V across wide range of initial pH, temperatures and ion types. Moreover, BAB700 also exhibited outstanding ability to electrosorb other heavy metals (Zn(II), Ni(II), and Cd(II)). In addition, the BAB700 retained the Cu(II) removal efficiency of 70 % in 10 cycles. Cu(II) in actual water is completely eliminated with great reproducibility, resulting in a high degree of applicability for water treatment.


Assuntos
Metais Pesados , Sargassum , Purificação da Água , Carvão Vegetal , Reprodutibilidade dos Testes , Purificação da Água/métodos , Eletrodos
18.
Bioresour Technol ; 370: 128536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581232

RESUMO

Due to growing health concerns, the urban population is utterly inclined towards a healthy lifestyle and incorporated nutritional food supplements to lower common health risks. The ω-3 and ω-6 PUFAs consumption is increasing, hence alternative commercial production is essentially developed. The microbial source is an emerging platform to overcome the global demand for omega PUFAs. Marine oleaginous protist Aurantiochytrium sp. found a potential source to produce substantial DHA and SFA. The objective of the present research was to enhance the PUFA yield by optimizing maximum tolerable glucose concentration with a suitable nitrogen ratio (10:1). The maximum lipid and DHA yield and content were determined 4.30, 1.34 g/L, and 62.4, 33.49 % of total biomass and lipid at 30 g/L glucose respectively, which is one of among highest reported, however relative PUFA was maximum 46.97 % (DHA) in total lipid at 10 g/L glucose. Remaining 42-53.6 % SFA could be used for biodiesel.


Assuntos
Ácidos Graxos Ômega-3 , Estramenópilas , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Insaturados , Suplementos Nutricionais , Glucose , Ácidos Graxos
19.
Environ Pollut ; 317: 120840, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36496067

RESUMO

Rapidly changing bioremediation prospects are key drive to develop sustainable options that can offer extra benefits rather than only environmental remediation. Algal remediating is gaining utmost attention due to its mesmerising sustainable features, removing odour and toxicity, co-remediating numerous common and emerging inorganic and organic pollutants from gaseous and aqueous environments, and yielding biomass for a range of valuable products refining. Moreover, it also improves carbon footprint via carbon-capturing offers a better option than any other non-algal process for several high CO2-emitting industries. Bio-uptake, bioadsorption, photodegradation, and biodegradation are the main mechanisms to remediate a range of common and emerging pollutants by various algae species. Bioadsorption was a dominant remediation mechanism among others implicating surface properties of pollutants and algal cell walls. Photodegradable pollutants were photodegraded by microalgae by adsorbing photons on the surface and intracellularly via stepwise photodissociation and breakdown. Biodegradation involves the transportation of selective pollutants intracellularly, and enzymes help to convert them into simpler non-toxic forms. Robust models are from the green microalgae group and are dominated by Chlorella species. This article compiles the advancements in microalgae-assisted pollutants remediation and value-addition under sustainable biorefinery prospects. Moreover, filling the knowledge gaps, and recommendations for developing an effective platform for emerging pollutants remediation and realization of commercial-scale algal bioremediation.


Assuntos
Chlorella , Poluentes Ambientais , Recuperação e Remediação Ambiental , Microalgas , Biodegradação Ambiental , Biomassa
20.
Bioresour Technol ; 369: 128450, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36496120

RESUMO

Excess waste-activated sludge (WAS) is a major biosolid management problem due to its biohazardous and recalcitrant content of phthalate esters (PAEs). This study aimed to assess the combined use of biopolymer, poly-3-hydroxybutyrate and peroxymonosulfate to degrade PAEs and decontaminate WAS. Poly-3-hydroxybutyrate was biosynthesized by Cupriavidus sp. L7L. The combined poly-3-hydroxybutyrate and peroxymonosulfate process removed 86 % of PAEs from WAS in 12 h. The carbonyl groups of poly-3-hydroxybutyrate were conducive to peroxymonosulfate activation leading to PAE degradation followed the radical pathway and surface-mediated electron transfer. Poly-3-hydroxybutyrate and peroxymonosulfate also enriched the PAE-biodegrading microbes in WAS. The microbial population and the functional composition in response to peroxymonosultate treatment was identified, with the genus Sulfurisoma being the most abundant. This synergistic treatment, i.e., advanced oxidation process, was augmented by highly promising microbial polyesters, exhibited important implications for WAS pretreatment toward circular bioeconomy that encompasses carbon-neutral biorefinery and mitigate pollution.


Assuntos
Microbiota , Ácidos Ftálicos , Esgotos/química , Ácidos Ftálicos/metabolismo , Descontaminação , Poliésteres/metabolismo , Ésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...