Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 370: 131018, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507210

RESUMO

The thermal degradation behavior of cyanidin-3-O-gluoside (Cy3G) in nitrogen and air was studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GCMS). The results show that the thermal degradation of Cy3G in nitrogen and in air can be divided into three steps. The total degradation rate was 63.09% in nitrogen and 99.42% in air, and the total activation energy (Ea) was 65.85 and 80.98 kJ·mol-1, respectively. The TG-FTIR analysis showed that Cy3G is significantly decomposed at 200-300 °C. The Py-GCMS analysis shows that the first step in the thermal degradation of Cy3G in nitrogen is the cleavage of glycosidic bonds to give cyanidin and glucoside. The glucoside and cyanidin then degrade further to give mainly low molecular weight compounds, together with furan derivatives, pyran derivatives and aromatic compounds. The phenols and furans found in the pyrolysis products are known to have a degree of toxicity.


Assuntos
Antocianinas , Glucosídeos , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos , Fenóis/análise
2.
Gland Surg ; 10(9): 2867-2873, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34733734

RESUMO

Traditionally, breast cancer patients with centrally located mass always receive mastectomy or the combination of central excision and primary closure. With the development of modern oncoplastic breast-conserving techniques, these patients can conserve their breast, and achieve satisfactory cosmetic outcome as well as clear margin. A variety of techniques are available to deal with centrally located breast cancers (CLBCs). Among these techniques, Grisotti flap technique is special, because it is easy to handle, and only causes minor injury by using a local rotational dermoglandular flap to fill the defection of central part. However, in our clinical practice, we find a lot of women in south China have special properties. Such as short distance from inframammary liner to the nipple, long distance from midclavicular to the nipple, and large breast diameter. Simply apply the Grisotti flap technique to those patients is not very suitable that drive us to modify this technique to suit our patients. We adopt the idea that use pedicled skin flap with skin island to replace the central defection to modify Grisotti flap technique. And applied this technique to two patients. We find modified Grisotti flap technique for Paget's disease or CLBC had good cosmetic results as well as safety in suitable patients. In the future, we can use superior pedicle with skin island for ptotic breasts, and lateral pedicle is suitable for patients without large and ptotic breasts.

3.
Front Oncol ; 11: 727752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692502

RESUMO

Background: Proficient mismatch repair (pMMR) colorectal adenocarcinoma (CRAC) metastasizes to a greater extent than MMR-deficient CRAC. Prognostic biomarkers are preferred in clinical practice. However, traditional biomarkers screened directly from sequencing are often not robust and thus cannot be confidently utilized. Methods: To circumvent the drawbacks of blind screening, we established a new strategy to identify prognostic biomarkers in the conserved and specific oncogenic pathway and its regulatory RNA network. We performed RNA sequencing (RNA-seq) for messenger RNA (mRNA) and noncoding RNA in six pMMR CRAC patients and constructed a glycosylation-related RNA regulatory network. Biomarkers were selected based on the network and their correlation with the clinicopathologic information and were validated in multiple centers (n = 775). Results: We constructed a competing endogenous RNA (ceRNA) regulatory network using RNA-seq. Genes associated with glycosylation pathways were embedded within this scale-free network. Moreover, we further developed and validated a seven-glycogene prognosis signature, GlycoSig (B3GNT6, GALNT3, GALNT8, ALG8, STT3B, SRD5A3, and ALG6) that prognosticate poor-prognostic subtype for pMMR CRAC patients. This biomarker set was validated in multicenter datasets, demonstrating its robustness and wide applicability. We constructed a simple-to-use nomogram that integrated the risk score of GlycoSig and clinicopathological features of pMMR CRAC patients. Conclusions: The seven-glycogene signature served as a novel and robust prognostic biomarker set for pMMR CRAC, highlighting the role of a dysregulated glycosylation network in poor prognosis.

4.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638868

RESUMO

Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Desacetilase 6 de Histona/metabolismo , MicroRNAs/biossíntese , Microvasos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Camundongos , Microvasos/citologia
5.
Brain Topogr ; 34(6): 731-744, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34652579

RESUMO

To evaluate the relationship between the network metrics of 68 brain regions and duration of temporal lobe epilepsy (TLE). Magnetoencephalography (MEG) data from 53 patients with TLE (28 left TLE, 25 right TLE) were recorded between seizures at resting state and analyzed in six frequency bands: delta (0.1-4 Hz), theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-13 Hz), beta (13-30 Hz), and lower gamma (30-48 Hz). Three local network metrics, betweenness centrality, nodal degree, and nodal efficiency, were chosen to analyze the functional brain network. In Left, Right, and All (Left + Right) TLE groups, different metrics provide significant positive or negative correlations with the duration of TLE, in different frequency bands, and in different brain regions. In the Left TLE group, significant correlation between TLE duration and metric exists in the delta, beta, or lower gamma band, with network betweenness centrality, nodal degree, or nodal efficiency, in left caudal middle frontal, left middle temporal, or left supramarginal. In the Right TLE group, significant correlation exists in lower gamma or delta band, with nodal degree, or nodal efficiency, in left precuneus or right temporal pole. In the All TLE group, the significant correlation exists in delta, theta, beta, or lower gamma band, with nodal degree, or betweenness centrality, in either left or right hemisphere. Network metrics for some specific brain regions changed in patients with TLE as the duration of their TLE increased. Further researching these changes may be important for studying the pathogenesis, presurgical evaluation, and clinical treatment of long-term TLE.

6.
ACS Omega ; 6(24): 15782-15793, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179622

RESUMO

End-stage renal disease (ESRD) is gradually becoming a major public healthcare burden worldwide. Post-translational modifications carrying epigenetic information play a crucial role in the pathogenesis of many chronic diseases. We performed lysine crotonylation (KCr) and lysine 2-hydroxyisobutyrylation (Khib) analyses with liquid chromatography-tandem mass spectrometry to obtain a comprehensive profile and reveal the specific pathogenesis of peripheral blood mononuclear cells in ESRD patients. 218 overlap proteins among differentially modified proteins (DMPs) of both 2-hydroxyisobutyrylation and crotonylation were identified. KEGG analysis enriched pathways of protein processing in endoplasmic reticulum (ER) and glycolysis/gluconeogenesis which is closely related with cell apoptosis. In Bip, a master regulator in the ER, eight sites were identified as having both KCr and Khib modifications. Five differentially KCr modification sites and three differentially Khib-modified sites were detected between ESRD patients and normal controls. Besides Bip, other proteins (GRP94, CNX, CRT, PDIs, GlcII, ERP57, Bap31, Hsp70, and Hsp90) happened both KCr and Khib modifications. Nine DMPs having both KCr and Khib modifications were related to the glycolysis/gluconeogenesis pathway containing two key regulatory enzymes of hexokinase-1 and pyruvate kinase. The two most abundant dual modification proteins were ENO1 and PGK1 with 15 sites and 8 sites, respectively. Lysine residue K228 with both KCr and Khib modifications in ENO1 was on its surface and made it accessible for p300 mediating dynamic modifications. Overall, we hypothesize that KCr and Khib comodifications may influence the number of immunocytes and further induce immune senescence in ESRD patients through the glycolysis/gluconeogenesis pathway and protein processing in the ER process, which may be a potential therapeutic direction in the future.

7.
Medicine (Baltimore) ; 100(24): e26368, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34128894

RESUMO

BACKGROUND: Qigong has a long-term application by integration of mind, breath and body to prevent and cure diseases. Researches show that qigong practice could adjust anxiety, the mechanism may found on brain and heart functions. Currently there are limitations on qigong's anxiety-release mechanism study between mind and body, and existing studies lack of evidence on electrophysiology research. Our objective to analyse qigong's anxiety-release effect and mechanism. METHODS: A two-arm randomized clinical trial with 144 qigong naïve anxiety subjects without cerebral or cardiovascular diseases or other severe syndromes will be allocated to either a body and breath regulation group (n = 72) or a body regulation group (n = 72). Participants will conduct three-circle post standing qigong exercise 5 times per week for 8 weeks, while the three-circle post standing qigong combined with abdominal breath regulation (TCPSQ-BR) group will combined with abdominal breath regulation. The primary outcome will be the Self-Rating Anxiety Scale (SAS), and the secondary outcome will be complexity-based measures of heart rate and electroencephalogram (EEG) signals assessed at baseline and 8 weeks. Multiscale entropy analysis will be used as measure of complexity. CONCLUSION: This study will be investigate the effects of qigong's anxiety-release by SAS, and will analyze the coordinates of EEG and heart rate variability (HRV) signals before and after three-circle post standing qigong (TCPSQ) practice, and to analyse their synergies by complex signal process method. ETHICS AND TRAIL REGISTRATION: The protocol was approved by the institutional review boards of Beijing University of Chinese Medicine (2018BZHYLL0109). This study was registered with the "Chinese Clinical Trail Registry" in the WHO Registry Network (ChiCTR-Bon-17010840).


Assuntos
Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/terapia , Qigong/métodos , Estudantes/psicologia , Adolescente , Transtornos de Ansiedade/prevenção & controle , Eletroencefalografia , Frequência Cardíaca , Humanos , Adulto Jovem
8.
Food Chem ; 358: 129881, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933950

RESUMO

The perchlorate levels in 330 foods belonging to 5 varieties obtained from Wuhan were monitored. An ultra-high performance liquid chromatography coupled with triple quadrupoles mass spectrometry in combination with Cl18O4- internal standard method was performed to determine the level of perchlorate in various foods. Hereafter, dietary exposure and risk assessment of perchlorate was evaluated. The results revealed that the average level of perchlorate was 15.04 µg/kg with a detection of 95% among the whole food groups. The level of perchlorate in vegetables was the highest among the 5 varieties of food with an average content of 27.39 µg/kg, which in meat was the lowest with an average of 3.65 µg/kg. Estimated dietary intake results illustrated that males showed exposure in the range 0.004-0.18 µg/kg bw/day, which for females was 0.01-0.21 µg/kg bw/day. The results indicated that exposure to perchlorate via the food consumption for Wuhan people was evaluated as safe.


Assuntos
Exposição Dietética/análise , Contaminação de Alimentos/análise , Percloratos/análise , China , Cromatografia Líquida de Alta Pressão , Água Potável/análise , Ingestão de Alimentos , Feminino , Humanos , Masculino , Espectrometria de Massas , Carne/análise , Medição de Risco , Verduras/química , Poluentes Químicos da Água/análise
9.
Biochem Biophys Res Commun ; 555: 175-181, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33819748

RESUMO

Microgravity and radiation exposure-induced bone damage is one of the most significant alterations in astronauts after long-term spaceflight. However, the underlying mechanism is still largely unknown. Recent ground-based simulation studies have suggested that this impairment is likely mediated by increased production of reactive oxygen species (ROS) during spaceflight. The small Maf protein MafG is a basic-region leucine zipper-type transcription factor, and it globally contributes to regulation of antioxidant and metabolic networks. Our research investigated the role of MafG in the process of apoptosis induced by simulated microgravity and radiation in MC3T3-E1 cells. We found that simulated microgravity or radiation alone decreased MafG expression and elevated apoptosis in MC3T3-E1 cells, and combined simulated microgravity and radiation treatment aggravated apoptosis. Meanwhile, under normal conditions, increased ROS levels facilitated apoptosis and downregulated the expression of MafG in MC3T3-E1 cells. Overexpression of MafG decreased apoptosis induced by simulated microgravity and radiation. These findings provide new insight into the mechanism of bone damage induced by microgravity and radiation during space flight.


Assuntos
Apoptose/efeitos da radiação , Fator de Transcrição MafG/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Proteínas Repressoras/metabolismo , Apoptose/fisiologia , Linhagem Celular , Regulação para Baixo , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Fator de Transcrição MafG/genética , Osteoblastos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Simulação de Ausência de Peso , Raios X
10.
Front Pharmacol ; 12: 653306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927626

RESUMO

Objective: C49 is a chalcone derivative. The aim of the current study is to illuminate the efficacy of C49 in reversing multidrug resistance (MDR) in MCF-7/DOX cells and its underlying molecular mechanism. Methods: The cytotoxic effects of C49 on MCF-7/DOX cells were evaluated by MTT assay using different concentration (0-250 µmol/L) of C49. Cell proliferation was evaluated by colony formation assay. Cell death was examined by morphological analysis using Hoechst 33,258 staining. Flow cytometry and immunofluorescence were utilized to evaluate the intracellular accumulation of doxorubicin (DOX) and cell apoptosis. The differentially expressed genns between MCF-7 and MCF-7/DOX cells were analyzed by GEO database. The expression of PI3K/Akt pathway proteins were assessed by Western blot The activities of C49 combined with DOX was evaluated via xenograft tumor model in female BALB/c nude mice. Results: C49 inhibited the growth of MCF-7 cells (IC50 = 59.82 ± 2.10 µmol/L) and MCF-7/DOX cells (IC50 = 65.69 ± 8.11 µmol/L) with dosage-dependent and enhanced the cellular accumulation of DOX in MCF-7/DOX cells. The combination of C49 and DOX inhibited cell proliferation and promoted cell apoptosis. MCF-7/DOX cells regained drug sensibility with the combination treatment through inhibiting the expression of P-gp, p-PI3K and p-Akt proteins. Meanwhile, C49 significantly increased the anticancer efficacy of DOX in vivo. Conclusion: C49 combined with DOX restored DOX sensitivity in MCF-7/DOX cells through inhibiting P-gp protein.

11.
Toxins (Basel) ; 13(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671637

RESUMO

Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) are type B trichothecenes; one of the major pollutants in food and feed products. Although the toxicity of DON has been well documented, information on the toxicity of its acetylated derivative remains incomplete. To acquire more detailed insight into 3-ADON and 15-ADON, Caco-2 cells under 0.5 µM DON, 3-ADON and 15-ADON treatment for 24 h were subjected to RNA-seq analysis. In the present study, 2656, 3132 and 2425 differentially expressed genes (DEGs) were selected, respectively, and were enriched utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) database. The upregulation of ataxia-telangiectasia mutated kinase (ATM), WEE1 homolog 2 (WEE2) and downregulation of proliferating cell nuclear antigen (PCNA), minichromosome maintenance (MCMs), cyclin dependent kinase (CDKs), and E2Fs indicate that the three toxins induced DNA damage, inhibition of DNA replication and cell cycle arrest in Caco-2 cells. Additionally, the upregulation of sestrin (SENEs) and NEIL1 implied that the reason for DNA damage may be attributable to oxidative stress. Our study provides insight into the toxic mechanism of 3-ADON and 15-ADON.


Assuntos
Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Tricotecenos/toxicidade , Acetilação , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Redes Reguladoras de Genes , Humanos , Concentração Inibidora 50 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , RNA-Seq
12.
Acupunct Med ; 39(6): 656-662, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33715459

RESUMO

BACKGROUND: Bone loss induced by microgravity is a serious problem in space flight. However, the effects of acupuncture stimulation on osteoporosis induced by microgravity have not been studied. With the goal of developing an effective countermeasure, our aim was to evaluate the effects of electroacupuncture (EA) stimulation at BL20, BL23, and SP6 on osteoporosis induced by simulated microgravity in rats. METHODS: Thirty male Wistar rats (aged 10 weeks) were randomly divided into three groups: healthy control group (CON, n = 10), hind limb unloading by tail-suspension group (T-S, n = 10), and EA treatment group (TRE, n = 10). Rats in the T-S and TRE groups were subjected to tail-suspension at -30° for 30 days, while the CON group experienced freedom of activity. In this period, the TRE group received EA treatment at BL20, BL23, and SP6 for 30 min every other day, which continued for 30 days. The microarchitecture of the proximal tibia and the biomechanical features of the femur in the rats were analyzed. In addition, the levels of serum biomarkers bone alkaline phosphatase (BALP) and osteocalcin (BGP) were measured. RESULTS: Compared with the CON group, the value of bone volume/total volume (BV/TV) and trabecular number (Tb.N) of the tibias in the TRE group remarkably decreased (p < 0.01). However, these changes were markedly less than those of the T-S group after 4 weeks of EA treatment (p < 0.05). Moreover, the serum concentration of BGP in the TRE group was also significantly higher than that of the T-S group (p < 0.05). CONCLUSIONS: These findings indicate that EA stimulation at BL20, BL23, and SP6 retards osteoporosis induced by hind limb unloading in rats.

13.
NPJ Microgravity ; 7(1): 3, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589605

RESUMO

Microgravity is well-known to induce Osteopenia. However, the combined effects of microgravity and radiation that commonly exist in space have not been broadly elucidated. This research investigates the combined effects on MC3T3-E1 cells and rat femurs. In MC3T3-E1 cells, simulated microgravity and X-ray radiation, alone or combination, show decreased cell activity, increased apoptosis rates by flow cytometric analysis, and decreased Runx2 and increased Caspase-3 mRNA and protein expressions. In rat femurs, simulated microgravity and X-ray radiation, alone or combination, show increased bone loss by micro-CT test and Masson staining, decreased serum BALP levels and Runx2 mRNA expressions, and increased serum CTX-1 levels and Caspase-3 mRNA expressions. The strongest effect is observed in the combined group in MC3T3-E1 cells and rat femurs. These findings suggest that the combination of microgravity and radiation exacerbates the effects of either treatment alone on MC3T3-E1 cells and rat femurs.

14.
Nano Lett ; 20(11): 8319-8325, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090809

RESUMO

The atomic-level understanding of the dynamic evolution of the surface structure of bimetallic nanoparticles under industrially relevant operando conditions provides a key guide for improving their catalytic performance. Here, we exploit operando X-ray absorption fine structure spectroscopy to determine the dynamic surface reconstruction of Cu/Au bimetallic alloy where single-atom Cu was embedded on the Au nanoparticle, under electrocatalytic conditions. We identify the migration of isolated Cu atoms from the vertex position of the Au nanoparticle to the stable (100) plane of the Au first atom layer, when the reduction potential is applied. Density functional theory calculations reveal that the surface atom migration would significantly modulate the Au electronic structure, thus serving as the real active site for the catalytic performance. These findings demonstrate the real structural change under electrochemical conditions and provide guidance for the rational design of high-activity bimetallic nanocatalysts.

15.
Nat Prod Res ; : 1-7, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32787580

RESUMO

ABTRACTThis study aims to design and synthesize a series of N-Acyl-N-(m-fluoro- benzyl)-6- amino-coumarins through the principle of active substructure stitching, which are based on the core structure of N-(m-fluoro-benzyl)-6-amino-coumarin. The structures of target compounds e1-e25 have been characterized by 1H NMR, 13C NMR, ESI-MS and elemental analysis. Meanwhile, their agricultural activity have been evaluated in two weeds (Amaranth and Crabgrass) and four widespread noxious pathogens (V.mali, B.cinerea, F.axysporium and C.bacteria). The herbicidal activity results showed that almost all synthetic molecules have a greater impact on the stem system than on the root. Excellent inhibition rates were discovered from compounds e2-e5 and e20-e23 against Amaranth on stems, which were above 58%(20 mg/L), 68%(100 mg/L) respectively. Compounds e2 and e21 also exhibited striking inhibition on stems growth of both weeds. Anti-pathogenic activity showed that all the compounds exerted a better inhibitory activity on B.cinerea at 20 ppm compared to control carbendazim. All the heterocyclic substituted compounds (e17-e24, >57%) made a better influence than the control (54.1%) at the100 ppm. This research provides promising herbicidal and anti-pathogenic agents that have the better effects and can be potential for further development.

16.
Front Genet ; 11: 624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695138

RESUMO

Background: Our aim was to evaluate the clinical utility of non-invasive prenatal testing for pregnant women with different diagnostic indications. Methods: In eight counties and districts of Yancheng, we studied 13,149 pregnant women with different indications who were offered NIPT for fetal screening, including for sex chromosomal aneuploidies (SCAs), rare autosomal trisomies (RATs), and subchromosomal copy number variations (CNVs). The purpose was to compare the detection of positive predictive values (PPVs) of different indications with the use of NIPT. The results were validated by karyotyping, chromosomal microarray analysis (CMA), or follow-up of pregnancy outcomes. Results: 13,149 maternal plasma samples were sequenced, among which 28 samples (0.2%) failed the sequencing quality control. The remaining 13,121 samples were analyzed, and birth follow-up missed 2,192 samples (16.7%). The PPVs of NIPT results for trisomy 21 (T21) and trisomy 18 (T18) and SCAs were 96.67, 63.64, and 31.34%, respectively. Among the advanced maternal age (AMA), serum screening high risk (SSHR), serum screening intermediate risk (SSIR), and voluntary screening (VS) groups, the PPVs for the common trisomies were 81.25, 85.71, 100, and 70%, respectively; the PPVs for total chromosomal abnormalities were 55.82, 65.22, 23.08, and 36.59%, respectively. Conclusion: NIPT for T21 and T18 and SCAs screening were ideal, and the PPVs for trisomy 13 (T13), RATs, and CNVs were low. For the AMA and VS groups, NIPT could be used as a first-line screening program; for SSHR and SSIR groups, NIPT could be used as a second-line supplementary screening program.

17.
Phys Chem Chem Phys ; 22(28): 15795-15798, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32453312

RESUMO

A straightforward strategy is developed to improve the injection efficiency of hot electrons in a Ag/TiO2 plasmonic photocatalyst by introducing Fe as a dopant. The Fe dopant energy level formed within the bandgap of TiO2 provides an extra electron transfer channel for transferring the hot electrons induced by plasmonic Ag nanoparticles.

18.
J Hazard Mater ; 394: 122583, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289623

RESUMO

The frequent occurrence of pharmaceuticals and personal care products (PPCPs) in domestic wastewater has caused great concern. In this study, the removal of two typical pharmaceuticals (Roxithromycin, ROX; Sulfamethoxazole, SMZ) in aerobic granular sludge (AGS) reactors was investigated under condition of different C/N (carbon to nitrogen) ratios. Results showed that higher removal efficiencies of ROX and SMZ (95.2 % and 92.9 %) were achieved in the AGS reactor fed with low C/N influent. Batch experiments further revealed that the removal of ROX was influenced by the adsorption ability of the AGS while SMZ removal was mainly enhanced by biodegradation process. Analysis of extracellular polymeric substances (EPS) showed that the humic acid-like substances were enriched under low C/N condition, which was in accordance with dynamic change of microbial community. The microbes, like Thauera spp. and Xanthomonadaceae, were highly enriched in the reactor with high nitrogen loading rate and functioned as refractory organics degrader. Overall, the AGS process could achieve enhanced pharmaceuticals removal performance by the regulation of microbial community under low C/N influent, which provides insights into a feasible solution for simultaneous removal of nitrogen and trace organic pollutants in AGS reactor.


Assuntos
Microbiota , Esgotos , Aerobiose , Reatores Biológicos , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias
19.
J Environ Sci (China) ; 91: 35-42, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172980

RESUMO

Much attention has been paid to the pollutant dimethylarsenic acid (DMA), because of its high toxicity even at very low doses. Although TiO2 photocatalytic oxidation (PCO) is one of the few effective methods for treating DMA-containing water, the efficient decomposition of DMA and simultaneous removal of toxic arsenic species remains a significant but challenging task. Here, defective mesoporous TiO2 with mixed-phase structure was synthesized and used as both photocatalyst and adsorbent for DMA removal. Due to the reduced band-gap and enhanced separation of photogenerated charge carriers, the oxygen-deficient TiO2 nanostructures exhibited 4.2 times higher PCO efficiency than commercial TiO2 (P25). More importantly, the high surface area of the mesoporous TiO2 provided sufficient active sites for in-situ adsorption and reaction, resulting in the efficient removal of as-formed As(V). Combining the experimental and characterization results, the different roles of reactive species during PCO reactions were clarified. In the presence of hole (h+) as the dominant oxidation species, DMA was demethylated and transformed into MMA. Thereafter, MMA was subsequently reduced to As(III) by photo-generated electrons. Superoxide radicals (O2•-) played a significant role in oxidizing As(III) into As(V), which was finally adsorptively removed by the mesoporous TiO2.


Assuntos
Ácido Cacodílico , Titânio , Adsorção , Catálise
20.
Biochem Biophys Res Commun ; 522(1): 164-170, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757419

RESUMO

Disuse osteoporosis is common in prolonged therapeutic bed rest, space flight and immobilization due to limb fracture, which is related to reduction of mechanical stress on bone. Mechanical unloading can inhibit the differentiation of osteoblasts, but the detailed mechanism is still unclear. Runt-related transcription factor-2 (Runx2), is an important transcription factor, which plays a crucial role in disuse osteoporosis induced by unloading conditions. In this study, we found that Runx2-targeting mechano-sensitive miR-30 family members, miR-30b, miR-30c, miR-30d and miR-30e increased significantly, and were negatively correlated with the expression of Runx2 under unloading condition. Further studies found that the four miRNAs inhibited the expression of Runx2 and osteoblast differentiation under normal loading, and the knockdown of these miRNAs attenuated partly the inhibition of osteoblast differentiation induced by unloading condition in MC3T3-E1 cells. This study is the first to report miR-30 family members can regulate partly the dysfunction of osteoblasts under unloading condition, which is expected to be targets for the treatment of disuse osteoporosis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , MicroRNAs/genética , Osteoblastos/citologia , Animais , Diferenciação Celular , Linhagem Celular , Regulação para Baixo , Camundongos , Osteoblastos/metabolismo , Osteogênese , Estresse Mecânico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...