Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Biomater Sci ; 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35014629

RESUMO

With the long-term widespread overuse of antibiotics, a large number of antibiotic-resistant bacteria have emerged and become a serious threat to healthcare systems. As an alternative strategy, near-infrared light (NIR)-actuated photothermal treatment has been developed for killing antibiotic-resistant bacteria. Although promising, the widespread applications of photothermal antibacterial platforms face great challenges due to the skin-harmful high laser irradiation. In this work, a novel NIR-responsive hydrogel membrane for effective photothermal sterilization upon light irradiation at skin-permissible intensity has been successfully prepared using a sodium alginate-based hydrogel membrane containing tannic acid-Fe(III) compounds (STF). The as-prepared STF displayed excellent mechanical capacity and fabricability. More importantly, the as-prepared STF revealed superior photothermal efficiency under a low-intensity NIR irradiation (0.3 W cm-2), which was below the maximum permissible exposure of skin (0.33 W cm-2). In addition, the STF showed the excellent performance of photothermal sterilization for MRSA both in vitro and in vivo. Furthermore, the STF showed good biocompatibility. Based on the simple synthesis method, outstanding mechanical properties, excellent photothermal sterilization performance and good biocompatibility, the STF could be a promising wound dressing for antibiotic-resistant bacterial infections.

2.
Acta Trop ; 225: 106222, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34757045

RESUMO

A better understanding of the changes in metabolic molecules during visceral leishmaniasis (VL) is essential to develop new strategies for diagnosis and treatment. Previous metabolomics studies on Leishmania have increased our knowledge of leishmaniasis and its causative pathogen. As these studies were mainly carried out in vitro, to go further, we conducted this global metabolomics analysis on the serum of golden hamsters. Serum samples were detected over a time course of 2, 4, 8 and 12 weeks post infection. Our results revealed that under extensively disturbed metabolomes between the infection group and controls, glycerophospholipid (GPL) metabolism was most affected over the infection time, followed by α-linoleic acid metabolism and arachidonic acid metabolism. Within GPLs, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were found to be significantly increased, while their enzyme-catalysed metabolites lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) showed no significant changes. Moreover, eight differential metabolites were selected. The ability of these metabolites to be used as a diagnostic biomarker panel was supported by receiver operating characteristic (ROC) analysis. Our findings revealed that GPL metabolism might play an important role in the response of the host to Leishmania infection. The metabolism of PC and PE might be crucial in the in vivo progression of VL. The panel of eight potential biomarkers might contribute to the diagnosis of VL.


Assuntos
Leishmaniose Visceral , Animais , Biomarcadores , Cricetinae , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Metabolismo dos Lipídeos , Mesocricetus , Metabolômica
3.
Food Chem ; 371: 131103, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537608

RESUMO

Hydroxyl radical system combined with GC-IMS and metabolomics were used to assess the effect of oxidation on the formation of volatile flavor emitted from yak meat. The formation of volatile compounds, including heptanal, octanal, nonanal, 2,3-glutaraldehyde, 3-hydroxy-2-butanone, etc. were promoted by oxidation. Among them, 2,3-pentanedione and 3-hydroxy-2-butanone, etc. maybe contributed most to the overall aroma of yak meat, while octanal, nonanal and benzaldehyde maybe related to the formation of off-odor or acidification. Meanwhile, the content of metabolites such as oleic acid, linoleic acid, etc. fatty acids and 3-dehydromangiferic acid, tyrosine were increased or decreased with the time of oxidation. More importantly, the formation of most flavor components in yak meat during the course of oxidation were related to stearidonic acid, acetylleucine, dehydroshikimate, 6-phosphate-glucose etc. differential metabolic components. Moreover, starch and sucrose metabolism (prediction), and amino acid metabolism (enrichment) etc. pathways maybe related with the process of oxidation.


Assuntos
Compostos Orgânicos Voláteis , Animais , Bovinos , Aromatizantes/análise , Carne , Odorantes/análise , Paladar
5.
Int J Biol Macromol ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34767883

RESUMO

Mg alloys are increasingly being investigated as a versatile and economical alternative for developing bone repair implants because of their high mechanical strength, wide availability, adjustable structure and properties. In this study, magnesium alloy WE43 is coated on both sides with gelatin nanosphere/chitosan (GNs/CTS), a coating enhanced by incorporating simvastatin (SIM). SIM-loaded GNs/CTS coated magnesium alloy can promote the osteogenic differentiation of bone mesenchymal stem cells (BMSCs). BMSCs and human umbilical vein endothelial cells (HUVECs) are co-cultured through transwell systems. The release of SIM from the coating is found to increase the secretion of chemokine and angiogenic factors from BMSCs, which promote the migration and tube formation of HUVECs, respectively. Bone morphogenetic protein secreted by HUVECs is seen to increase by the release of SIM from the coating, promoting the osteogenic differentiation of BMSCs. The secretion of chemokines from HUVECs promote the migration of BMSCs. The coated magnesium alloy substrate loaded with SIM is found to regulate the osteogenic differentiation of BMSCs. The study of the paracrine interaction between BMSCs and HUVECs proves that the applied coating promotes both osteogenic differentiation and vascularization, thus demonstrating a new approach for the design of bone repair materials based on magnesium alloys.

6.
Ultrason Sonochem ; 79: 105760, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34653916

RESUMO

Cavitation damage is a micro, high-speed, multi-phase complex phenomenon caused by the near-wall bubble group collapse. The current numerical simulation method of cavitation mainly focuses on the collapse impact of a single cavitation bubble. The large-scale simulation of the cavitation bubble group collapse is difficult to perform and has not been studied, to the best of our knowledge. In this study, the equivalent model of impact loading of acoustic bubble collapse micro-jets is proposed to study the cavitation erosion damage of materials. Based on the theory of the micro-jet and the water hammer effect of the liquid-solid impact, an equivalent model of impact loading of a single acoustic bubble collapse micro-jet is established under the principle of deformation equivalence. Since the acoustic bubbles can be considered uniformly distributed in a small enough area, an equivalent model of impact loading of multiple acoustic bubble collapse micro-jets in a micro-segment can be derived based on the equivalent results of impact loading of a single acoustic bubble collapse micro-jet. In fact, the equivalent methods of cavitation damage loading for single and multiple near-wall acoustic bubble collapse micro-jets are formed. The verification results show the law of cavitation deformation of concrete using equivalent loading is consistent with that of a micro-jet simulation, and the average relative errors and the mean square errors are insignificant. The equivalent method of impact loading proposed in this paper has high accuracy and can greatly improve the calculation efficiency, which provides technical support for numerical simulation of concrete cavitation.

7.
ACS Nano ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669393

RESUMO

Triboelectric nanogenerators (TENGs) are useful for harvesting clean and widely distributed water droplet energy with high efficiency. However, the commonly used polymer films in TENGs for water droplet energy harvesting have the disadvantages of poor breathability, poor skin affinity, and irreparable hydrophobicity, which greatly hinder their wearable uses. Here, we report an all-fabric TENG (F-TENG), which not only has good air permeability and hydrophobic self-repairing properties but also shows effective energy conversion efficiency. The hydrophobic surface composed of SiO2 nanoparticles and poly(vinylidenefluoride-co-hexafluoropropylene)/perfluorodecyltrichlorosilane (PVDF-HFP/FDTS) exhibits a static contact angle of 157° and displays excellent acid and alkali resistance. Because of its low glass transition temperature, PVDF-HFP can facilitate the movement of FDTS molecules to the surface layer under heating conditions, realizing hydrophobic self-repairing performance. Furthermore, with the optimized compositions and structure, the water droplet F-TENG shows 7-fold enhancement of output voltage compared with the conventional single-electrode mode TENG, and a total energy conversion efficiency of 2.9% is achieved. Therefore, the proposed F-TENG can be used in multifunctional wearable devices for raindrop energy harvesting.

8.
Cell Mol Life Sci ; 78(23): 7709-7732, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713304

RESUMO

This study investigated the regulation of GRP78 in tumour-associated macrophage polarization in lung cancer. First, our results showed that GRP78 was upregulated in macrophages during M2 polarization and in a conditioned medium derived from lung cancer cells. Next, we found that knocking down GRP78 in macrophages promoted M1 differentiation and suppressed M2 polarization via the Janus kinase/signal transducer and activator of transcription signalling. Moreover, conditioned medium from GRP78- or insulin-like growth factor 1-knockdown macrophages attenuated the survival, proliferation, and migration of lung cancer cells, while conditioned medium from GRP78-overexpressing macrophages had the opposite effects. Additionally, GRP78 knockdown reduced both the secretion of insulin-like growth factor 1 and the phosphorylation of the insulin-like growth factor 1 receptor. Interestingly, insulin-like growth factor 1 neutralization downregulated GRP78 and suppressed GRP78 overexpression-induced M2 polarization. Mechanistically, insulin-like growth factor 1 treatment induced the translocation of GRP78 to the plasma membrane and promoted its association with the insulin-like growth factor 1 receptor. Finally, IGF-1 blockade and knockdown as well as GRP78 knockdown in macrophages inhibited M2 macrophage-induced survival, proliferation, and migration of lung cancer cells both in vitro and in vivo.

9.
ACS Appl Mater Interfaces ; 13(39): 46659-46664, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569784

RESUMO

Ambient electrochemical oxygen reduction into valuable hydrogen peroxide (H2O2) via a selective two-electron (2e-) pathway is regarded as a sustainable alternative to the industrial anthraquinone process, but it requires advanced electrocatalysts with high activity and selectivity. In this study, we report that Mn-doped TiO2 behaves as an efficient electrocatalyst toward highly selective H2O2 synthesis. This catalyst exhibits markedly enhanced 2e- oxygen reduction reaction performance with a low onset potential of 0.78 V and a high H2O2 selectivity of 92.7%, much superior to the pristine TiO2 (0.64 V, 62.2%). Additionally, it demonstrates a much improved H2O2 yield of up to 205 ppm h-1 with good stability during bulk electrolysis in an H-cell device. The significantly boosted catalytic performance is ascribed to the lattice distortion of Mn-doped TiO2 with a large amount of oxygen vacancies and Ti3+. Density functional theory calculations reveal that Mn dopant improves the electrical conductivity and reduces ΔG*OOH of pristine TiO2, thus giving rise to a highly efficient H2O2 production process.

10.
Nanomicro Lett ; 13(1): 194, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519929

RESUMO

It is of great importance to explore a creative route to improve the degradation efficiency of organic pollutants in wastewater. Herein, we construct a unique hybrid system by combining self-powered triboelectric nanogenerator (TENG) with carbon dots-TiO2 sheets doped three-dimensional graphene oxide photocatalyst (3DGA@CDs-TNs), which can significantly enhance the degradation efficiency of brilliant green (BG) and direct blue 5B (DB) owing to the powerful interaction of TENG and 3DGA@CDs-TNs photocatalyst. The power output of TENG can be applied for wastewater purification directly, which exhibits a self-powered electrocatalytic technology. Furthermore, the results also verify that TENG can replace conventional electric catalyst to remove pollutants effectively from wastewater without any consumption. Subsequently, the unstable fragments and the plausible removal pathways of the two pollutants are proposed. Our work sheds light on the development of efficient and sustainable TENG/photocatalyst system, opening up new opportunities and possibilities for comprehensive utilization of random energy.

11.
Cell Metab ; 33(10): 2021-2039.e8, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34508696

RESUMO

Clear cell renal cell carcinoma (ccRCC) preferentially invades into perinephric adipose tissue (PAT), a process associated with poor prognosis. However, the detailed mechanisms underlying this interaction remain elusive. Here, we describe a bi-directional communication between ccRCC cells and the PAT. We found that ccRCC cells secrete parathyroid-hormone-related protein (PTHrP) to promote the browning of PAT by PKA activation, while PAT-mediated thermogenesis results in the release of excess lactate to enhance ccRCC growth, invasion, and metastasis. Further, tyrosine kinase inhibitors (TKIs) extensively used in the treatment of ccRCC enhanced this vicious cycle of ccRCC-PAT communication by promoting the browning of PAT. However, if this cross-communication was short circuited by the pharmacological suppression of adipocyte browning via H89 or KT5720, the anti-tumor efficacy of the TKI, sunitinib, was enhanced. These results suggest that ccRCC-PAT cross-communication has important clinical relevance, and use of combined therapy holds great promise in enhancing the efficacy of TKIs.

12.
ACS Appl Mater Interfaces ; 13(37): 44868-44877, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34506103

RESUMO

The development of elastic electronic technology has promoted the application of triboelectric nanogenerators (TENGs) in flexible wearable electronics. However, most of the flexible electronics cannot achieve the requirements of being extremely stretchable, transparent, and highly conductive at the same time. Herein, we report a TENG constructed using a double-network polymer ionic conductor sodium alginate/zinc sulfate/poly acrylic-acrylamide (SA-Zn) hydrogel, which exhibited outstanding stretchability (>10,000%), high transparency (>95%), and good conductivity (0.34 S·m-1). The SA-Zn hydrogel TENG (SH-TENG) could harvest energy from typical human movements, such as bending, stretching, and twisting, which could light up 234 green commercial LEDs easily. Additionally, the SH-TENG can be used to prepare a self-powered smart training band sensor for monitoring arm stretching motion. This work may provide an innovative platform for accessing the next generation of sustainable wearable and sports monitoring electronics.

13.
Int J Biol Sci ; 17(12): 3158-3172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421357

RESUMO

DEAD-box protein 39 (DDX39) has been demonstrated to be a tumorigenic gene in multiple tumor types, but its role in the progression and immune microenvironment of clear cell renal cell cancer (ccRCC) remains unclear. The aim of the present study was to investigate the role of DDX39 in the ccRCC tumor progression, immune microenvironment and efficacy of immune checkpoint therapy. The DDX39 expression level was first detected in tumors in the public data and then verified in ccRCC samples from Changzheng Hospital. The prognostic value of DDX39 expression was assessed in the Cancer Genome Atlas (TCGA) and ccRCC patients from Changhai Hospital. The role of DDX39 in promoting ccRCC was analyzed by bioinformatic analysis and in vitro experiments. The association between DDX39 expression and immune cell infiltration and immune inhibitory markers was analyzed, and its value in predicting the immune checkpoint therapy efficacy in ccRCC were evaluated in the public database. DDX39 expression was elevated in Oncomine, GEO and TCGA ccRCC databases, as well as in Changzheng ccRCC samples. In TCGA ccRCC patients, increased DDX39 expression predicted worse overall survival (OS) (p<0.0001) and progression-free interval (PFI) (p<0.0001), and was shown as an independent predictive factor for OS (p=0.002). These findings were consistent with those from Changhai ccRCC patients. In addition, GO and GSEA analysis identified DDX39 as a pro-ccRCC gene. In vitro experiments confirmed the role of DDX39 in promoting ccRCC cell. Finally, DDX39 was found to be positively correlated with a variety of immune inhibitory markers, and could predict the adverse efficacy of immune checkpoint therapy in TIDE analysis. In conclusion, Increased DDX39 in ccRCC patients predicted worse clinical prognosis, promoted ccRCC cell proliferation, migration and invasion, and also predicted adverse efficacy of immune checkpoint therapy.

14.
Int J Implant Dent ; 7(1): 70, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34345951

RESUMO

BACKGROUND: Concentrated growth factor (CGF) is a third-generation platelet concentrate product; the major source of growth factors in CGF is its extract; however, there are few studies on the overall effects of the extract of CGF (CGF-e). The aim of this study was to investigate the effect and mechanism of CGF-e on MC3T3-E1 cells in vitro and to explore the effect of combination of CGF-e and bone collagen (Bio-Oss Collagen, Geistlich, Switzerland) for bone formation in cranial defect model of rats in vivo. METHODS: The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression were evaluated in vitro; the newly formed bone was evaluated by histological and immunohistochemical analysis through critical-sized cranial defect rat model in vivo. RESULTS: The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression of CGF-e group were significantly increased compared with the control group. In addition, there was significantly more newly formed bone in the CGF-e + bone collagen group, compared to the blank control group and bone collagen only group. CONCLUSIONS: CGF-e activated the PI3K/AKT signaling pathway to enhance osteogenic differentiation and mineralization of MC3T3-E1 cells and promoted the bone formation of rat cranial defect model.


Assuntos
Osteogênese , Proteínas Proto-Oncogênicas c-akt , Animais , Regeneração Óssea , Peptídeos e Proteínas de Sinalização Intercelular/genética , Osteoblastos , Fosfatidilinositol 3-Quinases/genética , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt/genética , Ratos
15.
Biomaterials ; 276: 121065, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391018

RESUMO

Clearance of peripheral amyloid-ß (Aß) has been demonstrated particularly promising for overcoming the blood-brain barrier (BBB) hurdle to remove brain-derived Aß associated with Alzheimer's disease (AD). However, currently used therapeutic agents targeting peripheral Aß cannot simultaneously achieve plasma Aß enrichment and enhanced clearance, which may result in poor bioavailability and rather low efficacy. Moreover, most of therapeutic agents usually promote the unfavorable aggregation of Aß. Herein, we construct a near-infrared (NIR) regulated surface-transformable and target peptide-guided upconversion platform (UCNP/ONA-P/K), serving as a safe and effective way for Aß clearance. Taking advantage of extended blood circulation, high selectivity toward Aß, and surface-transformable property, such UCNP/ONA-P/K can address the challenges of peripheral Aß clearance by a combination of enhancing the enrichment of plasma Aß, preventing the unfavorable aggregation of Aß and simultaneously facilitating the hepatic clearance of the captured Aß. After verified by a series of systematic toxicity evaluation, cell uptake, deep tissue penetration, and hemolytic experiments, in vivo studies demonstrate that UCNP/ONA-P/K can efficiently decrease brain Aß burden and reverse memory deficits in 3xTg-AD mice. Overall, this NIR multi-functional design provides a new biocompatible and efficient way for Aß removal, which will promote the application of peripheral clearance of Aß for AD treatment.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Camundongos
16.
Chem Commun (Camb) ; 57(67): 8288-8291, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318821

RESUMO

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclization of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and broad substrate scope are the attractive features of this synthetic protocol, which provides a unique platform for precise radical cyclization.

17.
Front Pharmacol ; 12: 677120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234673

RESUMO

IMMH-010 is a prodrug of YPD-29B, which is a novel PD-L1 inhibitor. A specific and sensitive LC-MS/MS method with polarity switching was developed and validated for the simultaneous determination of IMMH-010 and YPD-29B in rat plasma, liver, brain, urine and fecal samples. Method validation was investigated to demonstrate the lower limit of quantification linearity, precision and accuracy, matrix effect and recovery, stability and dilution reliability for IMMH-010 and YPD-29B. This validated method was successfully applied to investigate the pharmacokinetics, tissue distribution, and excretion of IMMH-010 and YPD-29B in rats. After oral administration of IMMH-010 maleate to rats, IMMH-010 was rapidly and extensively converted to the active metabolite YPD-29B. The areas under the plasma concentration-time curve (AUC) of IMMH-010 and YPD-29B were proportional to the dose in the range of 10-100 mg/kg. IMMH-010 was primarily distributed in the adrenal gland, lymph nodes, heart, liver and spleen. YPD-29B was mainly observed in the liver, lymph, kidney, and lung. Approximately 28.81% of the IMMH-010 dose was recovered in the urine and feces within 72 h, including unchanged IMMH-010 (7.99%) and YPD-29B (20.82%). The results of this study may be useful as a reference for further development of IMMH-010 and PD-L1 inhibitors. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT04343859?term=IMMH-010&draw=2&rank=1], identifier [NCT04343859]."

18.
ACS Appl Mater Interfaces ; 13(28): 33182-33187, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251177

RESUMO

The electrochemical oxygen reduction reaction (ORR) is regarded as an attractive alternative to the anthraquinone process for sustainable and on-site hydrogen peroxide (H2O2) production. It is however hindered by low selectivity due to strong competition from the four-electron ORR and needs efficient catalysts to drive the 2e- ORR. Here, an acid oxidation strategy is proposed as an effective strategy to boost the 2e- ORR activity of metallic TiC via in-site generation of a surface amorphous oxygen-deficient TiO2-x layer. The resulting a-TiO2-x/TiC exhibits a low overpotential and high H2O2 selectivity (94.1% at 0.5 V vs reversible hydrogen electrode (RHE)), and it also demonstrates robust stability with a remarkable productivity of 7.19 mol gcat.-1 h-1 at 0.30 V vs RHE. The electrocatalytic mechanism of a-TiO2-x/TiC is further revealed by density functional theory calculations.

19.
Pain Med ; 22(9): 2117-2127, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152398

RESUMO

OBJECTIVE: To identify the analgesic effectiveness of acupuncture after total knee replacement by systematic review. METHODS: A search of randomized controlled trials was conducted in five English medical electronic databases and five Chinese databases. Two reviewers independently searched in five English medical electronic databases and five Chinese databases. Two reviewers independently retrieved related studies, assessed the methodological quality, and extracted data with a standardized data form. Meta-analyses were performed with all-time-points meta-analysis. RESULTS: A total of seven studies with 891 participants were included. The meta-analysis results indicated that acupuncture had a statistically significant influence on pain relief (standardized mean difference = -0.705, 95% CI -1.027 to -0.382, P = 0.000). The subgroup analysis results showed that acupuncture's effects on analgesia had a statistically significant influence (standardized mean difference= -0.567, 95% CI -0.865 to -0.269, P = 0.000). The main acupuncture points that produced an analgesic effect when they were used after total knee replacement included the Xuehai, Liangqiu, Dubi, Neixiyan, Yanglingquan, and Zusanli points. Electroacupuncture frequency ranged between 2 and 100 Hz. CONCLUSIONS: As an adjunct modality, the use of acupuncture is associated with reduced pain and use of analgesic medications in postoperative patients. In particular, ear acupuncture 1 day before surgery could reduce analgesia .


Assuntos
Terapia por Acupuntura , Artroplastia do Joelho , Artroplastia do Joelho/efeitos adversos , Humanos , Dor Pós-Operatória/terapia
20.
Nanomicro Lett ; 13(1): 103, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34138337

RESUMO

Combination flexible and stretchable textiles with self-powered sensors bring a novel insight into wearable functional electronics and cyber security in the era of Internet of Things. This work presents a highly flexible and self-powered fully fabric-based triboelectric nanogenerator (F-TENG) with sandwiched structure for biomechanical energy harvesting and real-time biometric authentication. The prepared F-TENG can power a digital watch by low-frequency motion and respond to the pressure change by the fall of leaves. A self-powered wearable keyboard (SPWK) is also fabricated by integrating large-area F-TENG sensor arrays, which not only can trace and record electrophysiological signals, but also can identify individuals' typing characteristics by means of the Haar wavelet. Based on these merits, the SPWK has promising applications in the realm of wearable electronics, self-powered sensors, cyber security, and artificial intelligences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...