Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227970

RESUMO

Increasing the power conversion efficiency (PCE) of colloidal quantum dot (CQD) solar cells has relied on improving the passivation of CQD surfaces, enhancing CQD coupling and charge transport, and advancing device architecture. The presence of hydroxyl groups on the nanoparticle surface, as well as dimers-fusion between CQDs-has been found to be the major source of trap states, detrimental to optoelectronic properties and device performance. Here, we introduce a CQD reconstruction step that decreases surface hydroxyl groups and dimers simultaneously. We explored the dynamic interaction of charge carriers between band-edge states and trap states in CQDs using time-resolved spectroscopy, showing that trap to ground-state recombination occurs mainly from surface defects in coupled CQD solids passivated using simple metal halides. Using CQD reconstruction, we demonstrate a 60% reduction in trap density and a 25% improvement in charge diffusion length. These translate into a PCE of 12.5% compared to 10.9% for control CQDs.

2.
Science ; 367(6482): 1135-1140, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139544

RESUMO

Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.

3.
J Am Chem Soc ; 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32150404

RESUMO

Metal halide perovskites show promise for light-emitting diodes (LEDs) owing to their facile manufacture and excellent optoelectronic performance, including high color purity and spectral stability, especially in the green region. However, for blue perovskite LEDs, the emission spectrum line width is broadened to over 25 nm by the coexistence of multiple reduced-dimensional perovskite domains, and the spectral stability is poor, with an undesirable shift (over 7 nm) toward longer wavelengths under operating conditions, degradation that occurs due to phase separation when mixed halides are employed. Here we demonstrate chloride insertion-immobilization, a strategy that enables blue perovskite LEDs, the first to exhibit narrowband (line width of 18 nm) and spectrally stable (no wavelength shift) performance. We prepare bromide-based perovskites and then employ organic chlorides for dynamic treatment, inserting and in situ immobilizing chlorides to blue-shift and stabilize the emission. We achieve sky-blue LEDs with a record luminance over 5100 cd/m2 at 489 nm, and an operating half-life of 51 min at 1500 cd/m2. By device structure optimization, we further realize an improved EQE of 5.2% at 479 nm and an operating half-life of 90 min at 100 cd/m2.

4.
Science ; 365(6454): 679-684, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31346140

RESUMO

The high-temperature, all-inorganic CsPbI3 perovskite black phase is metastable relative to its yellow, nonperovskite phase at room temperature. Because only the black phase is optically active, this represents an impediment for the use of CsPbI3 in optoelectronic devices. We report the use of substrate clamping and biaxial strain to render black-phase CsPbI3 thin films stable at room temperature. We used synchrotron-based, grazing incidence, wide-angle x-ray scattering to track the introduction of crystal distortions and strain-driven texture formation within black CsPbI3 thin films when they were cooled after annealing at 330°C. The thermal stability of black CsPbI3 thin films is vastly improved by the strained interface, a response verified by ab initio thermodynamic modeling.

5.
Nanoscale ; 11(12): 5247-5253, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30864572

RESUMO

We report the photoinduced post-synthesis method of Mn doping in colloidal perovskite nanocrystals, which can produce Mn-doped CsPbX3 (X = Cl, Br) nanocrystals with preserved size and anisotropic morphology. Photoinduced Mn doping occurs through cation exchange driven by the facile photoinduced halide exchange in dihalomethane (CH2X2, X = Cl, Br) solvent taking advantage of in situ photogeneration of halide ions from the solvent molecules. In the presence of a small amount of Mn acetate dissolved in solvent at sub-micromolar concentration, photoexcitation of the nanocrystals above the bandgap initiates the simultaneous anion and cation exchange. Under the condition of self-anion exchange, the resulting product is only the cation (Mn) doping in the nanocrystal host without changing halide composition, where the extent of doping can be controlled by excitation light intensity. The mild nature of the photoinduced doping also preserves the anisotropic morphology of the nanocrystals. The photoinduced Mn-doping method could be further expanded to other cations providing a versatile means of creating various cation-doped perovskite nanocrystals that are difficult to produce by other means.

6.
ACS Nano ; 12(12): 12436-12443, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30521756

RESUMO

We report the strong light-induced activation of forbidden exciton transition in CsPbBr3 perovskite quantum dots mediated by the symmetry-breaking polaron that modifies the optical selection rule of the confined exciton transition. The activated forbidden transition results in an intense pump-induced absorption in the transient absorption spectra above the bandgap, where the original parity-forbidden transition was located. In contrast to many other semiconductor quantum dots, photoexcitation of an exciton in CsPbBr3 quantum dots creates a sufficiently large perturbation via a lattice-distorting polaron, which turns on the formally forbidden transition. Compared to the bulk or weakly confined CsPbBr3, the activation of the forbidden transition in strongly confined quantum dots is much more prominent due to the stronger influence of the polaron on exciton transitions in the confined space. This nonlinear optical property highlights the intimate coupling of the photoexcited charge carriers with the lattice in the CsPbBr3 quantum dots, allowing access to the forbidden exciton transitions with light.

7.
Nano Lett ; 18(6): 3716-3722, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29727576

RESUMO

Cesium lead halide (CsPbX3) nanocrystals have emerged as a new family of materials that can outperform the existing semiconductor nanocrystals due to their superb optical and charge-transport properties. However, the lack of a robust method for producing quantum dots with controlled size and high ensemble uniformity has been one of the major obstacles in exploring the useful properties of excitons in zero-dimensional nanostructures of CsPbX3. Here, we report a new synthesis approach that enables the precise control of the size based on the equilibrium rather than kinetics, producing CsPbX3 quantum dots nearly free of heterogeneous broadening in their exciton luminescence. The high level of size control and ensemble uniformity achieved here will open the door to harnessing the benefits of excitons in CsPbX3 quantum dots for photonic and energy-harvesting applications.

8.
J Am Chem Soc ; 139(12): 4358-4361, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28290681

RESUMO

Cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) possess the unique capability of post-synthesis anion exchange providing facile tunability of the optical properties, which is usually achieved by mixing NCs with reactive anion precursors. In this work, we show that the controllable anion exchange can be achieved in a dihalomethane solution of CsPbX3 NC in the absence of any spontaneously reacting anion source using photoexcitation of CsPbX3 NCs as the triggering mechanism for the halide ion exchange. The reaction begins with the photoinduced electron transfer from CsPbX3 NCs to dihalomethane solvent molecules producing halide ions via reductive dissociation, which is followed by anion exchange. The reaction proceeds only in the presence of excitation light and the rate and extent of reaction can be controlled by varying the light intensity. Furthermore, the asymptotic extent of reaction under continuous excitation can be controlled by varying the wavelength of light that self-limits the reaction when light becomes off-resonance with the absorption of NCs. The light-controlled anion exchange demonstrated here can be utilized to pattern the post-synthesis chemical transformation of CsPbX3 NCs, not readily achievable using typical methods of anion exchange.

9.
Nano Lett ; 16(12): 7376-7380, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27797528

RESUMO

We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX3) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl3 and CsPb(Cl/Br)3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn2+ ions upon band-edge excitation of the CsPbX3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn2+ in host CsPbX3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb2+. These observations indicate that CsPbX3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.

10.
Nano Lett ; 16(11): 7270-7275, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27701861

RESUMO

The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm2) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

11.
Chemphyschem ; 17(5): 660-4, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26807659

RESUMO

We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier.

12.
J Phys Chem Lett ; 6(1): 44-7, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26263089

RESUMO

The dependence of the energy transfer rate on the content of sp(2)-hybridized carbon atoms in the hybrid structures of reduced graphene oxide (RGO) and Mn-doped quantum dot (QD(Mn)) was investigated. Taking advantage of the sensitivity of QD(Mn)'s dopant luminescence lifetime only to the energy transfer process without interference from the charge transfer process, the correlation between the sp(2) carbon content in RGO and the rate of energy transfer from QD(Mn) to RGO was obtained. The rate of energy transfer showed a strongly superlinear increase with increasing sp(2) carbon content in RGO, suggesting the possible cooperative behavior of sp(2) carbon domains in the energy transfer process as the sp(2) carbon content increases.

13.
Anal Chem ; 87(17): 9070-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26218167

RESUMO

The study of behaviors of ionic current rectification (ICR) in organic solutions with quartz nanopipettes is reported. ICR can be observed even in organic solutions using quartz pipettes with diameters varied from several to dozens of nanometers, and the direction of ICR is quite different from the ICR observed in aqueous phase. The influences of pore size, electrolyte concentration, and surface charge on the ICR have been investigated carefully. Water in organic solutions affects the direction and extent of ICR significantly. Mechanisms about the formation of an electrical double layer (EDL) on silica in organic solutions with different amount of water have been proposed. An improved method, which can be employed to detect trace water in organic solutions, has been implemented based on Au ultramicroelectrodes with cathodic differential pulse stripping voltammetry.

14.
J Am Chem Soc ; 137(16): 5549-54, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25860231

RESUMO

We show that hot electrons exhibiting the enhanced photocatalytic activity in H2 production reaction can be efficiently generated in Mn-doped quantum dots via the "upconversion" of the energy of two excitons into the hot charge carriers. The sequential two-photon-induced process with the long-lived Mn excited state serving as the intermediate state is considered as the pathway generating hot electrons. H2 production rate from doped quantum dots is significantly higher than that from undoped quantum dots and also exhibited the quadratic increase with the light intensity, demonstrating the effectiveness of the hot electrons produced in doped quantum dots in photocatalytic reaction. Due to the very long lifetime of Mn excited state (∼6 ms) in the doped quantum dots, the sequential two-photon excitation requires relatively low excitation rates readily achievable with a moderately concentrated solar radiation, demonstrating their potential as an efficient source of hot electrons operating at low excitation intensities.

15.
Anal Chem ; 84(13): 5565-73, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22762260

RESUMO

The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.

16.
Anal Chem ; 82(20): 8711-6, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20857916

RESUMO

A novel photoelectrochemical biosensing platform for the detection of biomolecules at relatively low applied potentials was constructed using porphyrin-functionalized TiO2 nanoparticles. The functional TiO2 nanoparticles were prepared by dentate binding of TiO2 with sulfonic groups of water-soluble [meso-tetrakis(4-sulfonatophenyl)porphyrin] iron(III) monochloride (FeTPPS) and characterized by transmission electron microscopy; contact angle measurement; and Raman, X-ray photoelectron, and ultraviolet-visible absorption spectroscopies. The functional nanoparticles showed good dispersion in water and on indium tin oxide (ITO) surface. The resulting FeTPPS-TiO2-modified ITO electrode showed a photocurrent response at +0.2 V to a light excitation at 380 nm, which could be further sensitized through an oxidation process of biomolecules by the hole-injected FeTPPS. Using glutathione as a model, a methodology for sensitive photoelectrochemical biosensing at low potential was thus developed. Under optimal conditions, the proposed photoelectrochemical method could detect glutathione ranging from 0.05 to 2.4 mmol L⁻¹ with a detection limit of 0.03 mmol L⁻¹ at a signal-to-noise ratio of 3. The photoelectrochemical biosensor had an excellent specificity against anticancer drugs and could be successfully applied to the detection of reduced glutathione in gluthion injection, showing a promising application in photoelectrochemical biosensing.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Nanopartículas Metálicas/química , Fotoquímica/métodos , Porfirinas/análise , Titânio/química , Glutationa/análise , Glutationa/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução , Porfirinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA