Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Transl Psychiatry ; 10(1): 100, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198361

RESUMO

This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.

2.
Am J Psychiatry ; : appiajp201919030225, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32212855

RESUMO

OBJECTIVE: Schizophrenia has recently been associated with widespread white matter microstructural abnormalities, but the functional effects of these abnormalities remain unclear. Widespread heterogeneity of results from studies published to date preclude any definitive characterization of the relationship between white matter and cognitive performance in schizophrenia. Given the relevance of deficits in cognitive function to predicting social and functional outcomes in schizophrenia, the authors carried out a meta-analysis of available data through the ENIGMA Consortium, using a common analysis pipeline, to elucidate the relationship between white matter microstructure and a measure of general cognitive performance, IQ, in patients with schizophrenia and healthy participants. METHODS: The meta-analysis included 760 patients with schizophrenia and 957 healthy participants from 11 participating ENIGMA Consortium sites. For each site, principal component analysis was used to calculate both a global fractional anisotropy component (gFA) and a fractional anisotropy component for six long association tracts (LA-gFA) previously associated with cognition. RESULTS: Meta-analyses of regression results indicated that gFA accounted for a significant amount of variation in cognition in the full sample (effect size [Hedges' g]=0.27, CI=0.17-0.36), with similar effects sizes observed for both the patient (effect size=0.20, CI=0.05-0.35) and healthy participant groups (effect size=0.32, CI=0.18-0.45). Comparable patterns of association were also observed between LA-gFA and cognition for the full sample (effect size=0.28, CI=0.18-0.37), the patient group (effect size=0.23, CI=0.09-0.38), and the healthy participant group (effect size=0.31, CI=0.18-0.44). CONCLUSIONS: This study provides robust evidence that cognitive ability is associated with global structural connectivity, with higher fractional anisotropy associated with higher IQ. This association was independent of diagnosis; while schizophrenia patients tended to have lower fractional anisotropy and lower IQ than healthy participants, the comparable size of effect in each group suggested a more general, rather than disease-specific, pattern of association.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31897578

RESUMO

BACKGROUND: Early life adversity (ELA) is a significant risk factor for mental health disorders. One hypothesised mechanism by which this occurs is via an effect on immune response. In this analysis of epidemiological data, we tested whether ELA was associated with cognitive performance, and if so, whether these effects were influenced by immune function. METHODS: We investigated the longitudinal relationship between ELA, inflammatory markers, and cognition in data from Avon Longitudinal Study of Parents And Children (ALSPAC; n ~ 5000). ELA was defined in terms of physical/emotional abuse, harsh parenting, or domestic violence before 5 years. Social cognition was measured in terms of theory of mind, and general cognitive ability was measured using IQ. Inflammatory markers included serum C-reactive protein and interleukin-6 levels. RESULTS: A significant association was observed between IQ and harsh parenting, whereby children who were physically disciplined had lower IQ scores (accounting for relevant social factors). Both immune markers were associated with variation in cognition, however, neither accounted for the effects of ELA on cognition. DISCUSSION: This study highlights the impact of ELA on cognition. In the absence of evidence that these effects are explained by inflammation, other mechanisms by which the effects of ELA are mediated are discussed.

4.
Curr Psychiatry Rep ; 22(1): 2, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31925558

RESUMO

PURPOSE OF REVIEW: We review recent progress in uncovering the complex genetic architecture of cognition, arising primarily from genome-wide association studies (GWAS). We explore the genetic correlations between cognitive performance and neuropsychiatric disorders, the genetic and environmental factors associated with age-related cognitive decline, and speculate about the future role of genomics in the understanding of cognitive processes. RECENT FINDINGS: Improvements in genomic methods, and the increasing availability of large datasets via consortia cooperation, have led to a greater understanding of the role played by common and rare variants in the genomics of cognition, the highly polygenic basis of cognitive function and dysfunction, and the multiple biological processes involved. Recent research has aided in our understanding of the complex biological nature of genomics of cognition. Further development of data banks and techniques to analyze this data hold significant promise for understanding cognitive ability, and for treating cognitively related disability.

5.
Br J Psychiatry ; : 1-5, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31964429

RESUMO

BACKGROUND: Copy number variants (CNVs) play a significant role in disease pathogenesis in a small subset of individuals with schizophrenia (~2.5%). Chromosomal microarray testing is a first-tier genetic test for many neurodevelopmental disorders. Similar testing could be useful in schizophrenia. AIMS: To determine whether clinically identifiable phenotypic features could be used to successfully model schizophrenia-associated (SCZ-associated) CNV carrier status in a large schizophrenia cohort. METHOD: Logistic regression and receiver operating characteristic (ROC) curves tested the accuracy of readily identifiable phenotypic features in modelling SCZ-associated CNV status in a discovery data-set of 1215 individuals with psychosis. A replication analysis was undertaken in a second psychosis data-set (n = 479). RESULTS: In the discovery cohort, specific learning disorder (OR = 8.12; 95% CI 1.16-34.88, P = 0.012), developmental delay (OR = 5.19; 95% CI 1.58-14.76, P = 0.003) and comorbid neurodevelopmental disorder (OR = 5.87; 95% CI 1.28-19.69, P = 0.009) were significant independent variables in modelling positive carrier status for a SCZ-associated CNV, with an area under the ROC (AUROC) of 74.2% (95% CI 61.9-86.4%). A model constructed from the discovery cohort including developmental delay and comorbid neurodevelopmental disorder variables resulted in an AUROC of 83% (95% CI 52.0-100.0%) for the replication cohort. CONCLUSIONS: These findings suggest that careful clinical history taking to document specific neurodevelopmental features may be informative in screening for individuals with schizophrenia who are at higher risk of carrying known SCZ-associated CNVs. Identification of genomic disorders in these individuals is likely to have clinical benefits similar to those demonstrated for other neurodevelopmental disorders.

6.
Schizophr Bull ; 46(2): 336-344, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31206164

RESUMO

BACKGROUND: Cognitive impairment is a clinically important feature of schizophrenia. Polygenic risk score (PRS) methods have demonstrated genetic overlap between schizophrenia, bipolar disorder (BD), major depressive disorder (MDD), educational attainment (EA), and IQ, but very few studies have examined associations between these PRS and cognitive phenotypes within schizophrenia cases. METHODS: We combined genetic and cognitive data in 3034 schizophrenia cases from 11 samples using the general intelligence factor g as the primary measure of cognition. We used linear regression to examine the association between cognition and PRS for EA, IQ, schizophrenia, BD, and MDD. The results were then meta-analyzed across all samples. A genome-wide association studies (GWAS) of cognition was conducted in schizophrenia cases. RESULTS: PRS for both population IQ (P = 4.39 × 10-28) and EA (P = 1.27 × 10-26) were positively correlated with cognition in those with schizophrenia. In contrast, there was no association between cognition in schizophrenia cases and PRS for schizophrenia (P = .39), BD (P = .51), or MDD (P = .49). No individual variant approached genome-wide significance in the GWAS. CONCLUSIONS: Cognition in schizophrenia cases is more strongly associated with PRS that index cognitive traits in the general population than PRS for neuropsychiatric disorders. This suggests the mechanisms of cognitive variation within schizophrenia are at least partly independent from those that predispose to schizophrenia diagnosis itself. Our findings indicate that this cognitive variation arises at least in part due to genetic factors shared with cognitive performance in populations and is not solely due to illness or treatment-related factors, although our findings are consistent with important contributions from these factors.

7.
Mol Psychiatry ; 25(3): 692-695, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30705424

RESUMO

Prior to and following the publication of this article the authors noted that the complete list of authors was not included in the main article and was only present in Supplementary Table 1. The author list in the original article has now been updated to include all authors, and Supplementary Table 1 has been removed. All other supplementary files have now been updated accordingly. Furthermore, in Table 1 of this Article, the replication cohort for the row Close relative in data set, n (%) was incorrect. All values have now been corrected to 0(0%). The publishers would like to apologise for this error and the inconvenience it may have caused.

8.
Mol Psychiatry ; 25(3): 584-602, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30283035

RESUMO

Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (ß = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (ß = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.

9.
Hum Mol Genet ; 29(3): 407-417, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868218

RESUMO

Mutations in genes that encode centrosomal/ciliary proteins cause severe cognitive deficits, while common single-nucleotide polymorphisms in these genes are associated with schizophrenia (SZ) and cognition in genome-wide association studies. The role of these genes in neuropsychiatric disorders is unknown. The ciliopathy gene SDCCAG8 is associated with SZ and educational attainment (EA). Genome editing of SDCCAG8 caused defects in primary ciliogenesis and cilium-dependent cell signalling. Transcriptomic analysis of SDCCAG8-deficient cells identified differentially expressed genes that are enriched in neurodevelopmental processes such as generation of neurons and synapse organization. These processes are enriched for genes associated with SZ, human intelligence (IQ) and EA. Phenotypic analysis of SDCCAG8-deficent neuronal cells revealed impaired migration and neuronal differentiation. These data implicate ciliary signalling in the aetiology of SZ and cognitive dysfunction. We found that centrosomal/ciliary genes are enriched for association with IQ, suggesting altered gene regulation as a general model for neurodevelopmental impacts of centrosomal/ciliary genes.

10.
BMC Psychiatry ; 19(1): 408, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856762

RESUMO

BACKGROUND: People with schizophrenia are ten times more likely to commit homicide than a member of the general population. The relationship between symptoms of schizophrenia and acts of violence is unclear. There has also been limited research on what determines the seriousness and form of violence, such as reactive or instrumental violence. Moral cognition may play a paradoxical role in acts of violence for people with schizophrenia. Thoughts which have moral content arising from psychotic symptoms may be a cause of serious violence. METHOD: We investigated if psychotic symptoms and moral cognitions at the time of a violent act were associated with acts of violence using a cross-sectional national forensic cohort (n = 55). We examined whether moral cognitions were associated with violence when controlling for neurocognition and violence proneness. We explored the association between all psychotic symptoms present at the time of the violent act, psychotic symptoms judged relevant to the violent act and moral cognitions present at that time. Using mediation analysis, we examined whether moral cognitions were the missing link between symptoms and the relevance of symptoms for violence. We also investigated if specific moral cognitions mediated the relationship between specific psychotic symptoms, the seriousness of violence (including homicide), and the form of violence. RESULTS: Psychotic symptoms generally were not associated with the seriousness or form of violence. However, specific moral cognitions were associated with the seriousness and form of violence even when controlling for neurocognition and violence proneness. Specific moral cognitions were associated with specific psychotic symptoms present and relevant to violence. Moral cognitions mediated the relationship between the presence of specific psychotic symptoms and their relevance for violence, homicide, seriousness of violence, and the form of violence. CONCLUSIONS: Moral cognitions including the need to reduce suffering, responding to an act of injustice or betrayal, the desire to comply with authority, or the wish to punish impure or disgusting behaviour, may be a key mediator explaining the relationship between psychotic symptoms and acts of violence. Our findings may have important implications for risk assessment, treatment and violence prevention.

11.
Hum Brain Mapp ; 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31737978

RESUMO

Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia.

12.
Mol Psychiatry ; 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780770

RESUMO

Identifying both the commonalities and differences in brain structures among psychiatric disorders is important for understanding the pathophysiology. Recently, the ENIGMA-Schizophrenia DTI Working Group performed a large-scale meta-analysis and reported widespread white matter microstructural alterations in schizophrenia; however, no similar cross-disorder study has been carried out to date. Here, we conducted mega-analyses comparing white matter microstructural differences between healthy comparison subjects (HCS; N = 1506) and patients with schizophrenia (N = 696), bipolar disorder (N = 211), autism spectrum disorder (N = 126), or major depressive disorder (N = 398; total N = 2937 from 12 sites). In comparison with HCS, we found that schizophrenia, bipolar disorder, and autism spectrum disorder share similar white matter microstructural differences in the body of the corpus callosum; schizophrenia and bipolar disorder featured comparable changes in the limbic system, such as the fornix and cingulum. By comparison, alterations in tracts connecting neocortical areas, such as the uncinate fasciculus, were observed only in schizophrenia. No significant difference was found in major depressive disorder. In a direct comparison between schizophrenia and bipolar disorder, there were no significant differences. Significant differences between schizophrenia/bipolar disorder and major depressive disorder were found in the limbic system, which were similar to the differences in schizophrenia and bipolar disorder relative to HCS. While schizophrenia and bipolar disorder may have similar pathological characteristics, the biological characteristics of major depressive disorder may be close to those of HCS. Our findings provide insights into nosology and encourage further investigations of shared and unique pathophysiology of psychiatric disorders.

13.
JAMA Psychiatry ; : 1-11, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31665216

RESUMO

Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities. Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance. Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019. Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort. Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (ß = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks. Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.

14.
Psychol Med ; : 1-10, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391132

RESUMO

BACKGROUND: Previous studies using resting-state functional neuroimaging have revealed alterations in whole-brain images, connectome-wide functional connectivity and graph-based metrics in groups of patients with schizophrenia relative to groups of healthy controls. However, it is unclear which of these measures best captures the neural correlates of this disorder at the level of the individual patient. METHODS: Here we investigated the relative diagnostic value of these measures. A total of 295 patients with schizophrenia and 452 healthy controls were investigated using resting-state functional Magnetic Resonance Imaging at five research centres. Connectome-wide functional networks were constructed by thresholding correlation matrices of 90 brain regions, and their topological properties were analyzed using graph theory-based methods. Single-subject classification was performed using three machine learning (ML) approaches associated with varying degrees of complexity and abstraction, namely logistic regression, support vector machine and deep learning technology. RESULTS: Connectome-wide functional connectivity allowed single-subject classification of patients and controls with higher accuracy (average: 81%) than both whole-brain images (average: 53%) and graph-based metrics (average: 69%). Classification based on connectome-wide functional connectivity was driven by a distributed bilateral network including the thalamus and temporal regions. CONCLUSION: These results were replicated across the three employed ML approaches. Connectome-wide functional connectivity permits differentiation of patients with schizophrenia from healthy controls at single-subject level with greater accuracy; this pattern of results is consistent with the 'dysconnectivity hypothesis' of schizophrenia, which states that the neural basis of the disorder is best understood in terms of system-level functional connectivity alterations.

15.
Genes Brain Behav ; 18(8): e12602, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31385409

RESUMO

Variation in cognitive performance, which strongly predicts functional outcome in schizophrenia (SZ), has been associated with multiple immune-relevant genetic loci. These loci include complement component 4 (C4A), structural variation at which was recently associated with SZ risk and synaptic pruning during neurodevelopment and cognitive function. Here, we test whether this genetic association with cognition and SZ risk is specific to C4A, or extends more broadly to genes related to the complement system. Using a gene-set with an identified role in "complement" function (excluding C4A), we used MAGMA to test if this gene-set was enriched for genes associated with human intelligence and SZ risk, using genome-wide association summary statistics (IQ; N = 269 867, SZ; N = 105 318). We followed up this gene-set analysis with a complement gene-set polygenic score (PGS) regression analysis in an independent data set of patients with psychotic disorders and healthy participants with cognitive and genomic data (N = 1000). Enrichment analysis suggested that genes within the complement pathway were significantly enriched for genes associated with IQ, but not SZ. In a gene-based analysis of 90 genes, SERPING1 was the most enriched gene for the phenotype of IQ. In a PGS regression analysis, we found that a complement pathway PGS associated with IQ genome-wide association studies statistics also predicted variation in IQ in our independent sample. This association (observed across both patients and controls) remained significant after controlling for the relationship between C4A and cognition. These results suggest a robust association between the complement system and cognitive function, extending beyond structural variation at C4A.

16.
Mol Psychiatry ; 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358905

RESUMO

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31072761

RESUMO

BACKGROUND: Cognitive dysfunction is a core feature of schizophrenia and a strong predictor of functional outcome. There is growing evidence for the effectiveness of behaviorally based cognitive training programs, although the neural basis of these benefits is unclear. To address this, we reviewed all published studies that have used neuroimaging to measure neural changes following cognitive training in schizophrenia to identify brain regions most consistently affected. METHODS: We searched PubMed for all neuroimaging studies examining cognitive training in schizophrenia published until December 2018. An activation likelihood estimation meta-analysis was conducted on a subset of functional magnetic resonance imaging studies to examine whether any brain regions showed consistent effects across studies. RESULTS: In total, 31 original neuroimaging studies of cognitive training were retrieved. Of these studies, 16 were functional neuroimaging studies, and 15 of these studies reported increased neural activation following cognitive training, with increased left prefrontal activation being the most frequently observed finding. However, activation likelihood estimation meta-analysis did not reveal any specific brain regions showing consistent effects across studies but rather suggested a broader, more distributed pattern of effects resulting from the interventions tested. CONCLUSIONS: Although several studies reported increased left prefrontal cortical activation after cognitive training, the lack of statistically significant overlap of brain regions affected by training across studies suggests broad effects of training on brain activation, possibly due to the variety of training programs used.

19.
Proc Natl Acad Sci U S A ; 116(19): 9604-9609, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004051

RESUMO

Schizophrenia has been conceived as a disorder of brain connectivity, but it is unclear how this network phenotype is related to the underlying genetics. We used morphometric similarity analysis of MRI data as a marker of interareal cortical connectivity in three prior case-control studies of psychosis: in total, n = 185 cases and n = 227 controls. Psychosis was associated with globally reduced morphometric similarity in all three studies. There was also a replicable pattern of case-control differences in regional morphometric similarity, which was significantly reduced in patients in frontal and temporal cortical areas but increased in parietal cortex. Using prior brain-wide gene expression data, we found that the cortical map of case-control differences in morphometric similarity was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms and pathways. In addition, genes that were normally overexpressed in cortical areas with reduced morphometric similarity were significantly up-regulated in three prior post mortem studies of schizophrenia. We propose that this combined analysis of neuroimaging and transcriptional data provides insight into how previously implicated genes and proteins as well as a number of unreported genes in their topological vicinity on the protein interaction network may drive structural brain network changes mediating the genetic risk of schizophrenia.

20.
PLoS Genet ; 15(2): e1007890, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30726206

RESUMO

During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia, whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we isolated SATB2 protein interactomes at the two ontogenetic stages and identified multiple novel SATB2 interactors. SATB2 interactomes are highly enriched for proteins that stabilize de novo chromatin loops. The comparison between the neonatal and adult SATB2 protein complexes indicates a developmental shift in SATB2 molecular function, from transcriptional repression towards organization of chromosomal superstructure. Accordingly, gene sets regulated by SATB2 in the neocortex of neonatal and adult mice show limited overlap. Genes encoding SATB2 protein interactors were grouped for gene set analysis of human GWAS data. Common variants associated with human cognitive ability are enriched within the genes encoding adult but not neonatal SATB2 interactors. Our data support a shift in the function of SATB2 in cortex over lifetime and indicate that regulation of spatial chromatin architecture by the SATB2 interactome contributes to cognitive function in the general population.


Assuntos
Cognição/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neocórtex/fisiologia , Fatores de Transcrição/genética , Adulto , Animais , Humanos , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Transcrição Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA