Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtros adicionais

Intervalo de ano
Front Plant Sci ; 9: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541083


The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two most closely related homologs of AtZOU, OsZOU-1 and OsZOU-2; of these, OsZOU-1 expression is limited to within the endosperm where it can be detected throughout this structure 5 days after pollination (DAP). Its expression gradually decreases from seven DAP to nine DAP. The second of the two most closely related homologs, OsZOU-2, is highly expressed in leaves and stem, but is not detected in developing seeds. Heterologous expression of OsZOU-1 and OsZOU-2 in Atzou-4 mutants also revealed that OsZOU-1 partially complements the seed phenotypes of these individuals, while its counterpart, OsZOU-2, was unable to recover these phenotypes. The over-expression of OsZOU-1 severely disrupts both seed development and plant growth in transgenic rice lines, as plants in which this gene has been knocked down failed in the separation of endosperm from embryo and cuticle formation during seed development. The results of this study therefore suggest that OsZOU-1 is orthologous to the AtZOU, and regulates both endosperm development and cuticle formation in rice.

Int J Mol Sci ; 18(1)2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28025485


Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.

Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal , Fatores de Transcrição/genética , Secas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
Int J Mol Sci ; 17(3): 233, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26927068


Abiotic stress, including salinity, drought and cold, severely affect diverse aspects of plant development and production. Rice is an important crop that does not acclimate to cold; therefore, it is relatively sensitive to low temperature stress. Dehydration-responsive element-binding protein 1s (DREB1s)/C-repeat binding factors (CBFs) are well known for their function in cold tolerance, but the transcriptional regulation of CBFs remains elusive, especially in rice. Here, we performed a yeast one-hybrid assay using the promoter of CBF1, a cold-induced gene, to isolate transcriptional regulators of CBF1. Among the seven candidates identified, an indeterminate domain (IDD) protein named ROC1 (a regulator of CBF1) was further analyzed. The ROC1 transcript was induced by exogenously-treated auxin, while it was not altered by cold or ABA stimuli. ROC1-GFP was localized at the nucleus, and ROC1 showed trans-activation activity in yeast. The electrophoretic mobility shift assay (EMSA) and ChIP analyses revealed that ROC1 directly bound to the promoter of CBF1. Furthermore, ROC1 mutants exhibited chilling-sensitive symptoms and inhibited cold-mediated induction of CBF1 and CBF3, indicating that ROC1 is a positive regulator of cold stress responses. Taken together, this study identified the CBF1 regulator, and the results are important for rice plant adaptation to chilling stress.

Aclimatação , Resposta ao Choque Frio , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Temperatura Baixa , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética