Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513310

RESUMO

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.

2.
J Clin Sleep Med ; 15(7): 1021-1029, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383240

RESUMO

STUDY OBJECTIVES: ADCY5 mutations cause early-onset hyperkinetic movement disorders comprising diurnal and nocturnal paroxysmal dyskinesia, and patient-reported sleep fragmentation. We aimed to characterize all movements occurring during sleep and in the transition from sleep to awakening, to ascertain if there is a primary sleep disorder, or if the sleep disturbance is rather a consequence of the dyskinesia. METHODS: Using video polysomnography, we evaluated the nocturnal motor events and abnormal movements in 7 patients with ADCY5-related dyskinesia and compared their sleep measures with those of 14 age- and sex-matched healthy controls. RESULTS: We observed an increased occurrence of abnormal movements during wake periods compared to sleep in patients with ADCY5-related dyskinesia. While asleep, abnormal movements occurred more frequently during stage N2 and REM sleep, in contrast with stage N3 sleep. Abnormal movements were also more frequent during morning awakenings compared to wake periods before falling asleep. The pattern of the nocturnal abnormal movements mirrored those observed during waking hours. Compared to controls, patients with ADCY5-related dyskinesia had lower sleep efficiencies due to prolonged awakenings secondary to the abnormal movements, but no other differences in sleep measures. Notably, sleep onset latency was short and devoid of violent abnormal movements. CONCLUSIONS: In this series of patients with ADCY5-related dyskinesia, nocturnal paroxysmal dyskinesia were not associated with drowsiness or delayed sleep onset, but emerged during nighttime awakenings with subsequent delayed sleep, whereas sleep architecture was normal.

3.
Hum Mutat ; 40(10): 1713-1730, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31050087

RESUMO

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification.

4.
Epilepsia ; 60(5): 845-856, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31026061

RESUMO

OBJECTIVE: To describe the mode of onset of SCN8A-related severe epilepsy in order to facilitate early recognition, and eventually early treatment with sodium channel blockers. METHODS: We reviewed the phenotype of patients carrying a mutation in the SCN8A gene, among a multicentric cohort of 638 patients prospectively followed by several pediatric neurologists. We focused on the way clinicians made the diagnosis of epileptic encephalopathy, the very first symptoms, electroencephalography (EEG) findings, and seizure types. We made genotypic/phenotypic correlation based on epilepsy-associated missense variant localization over the protein. RESULTS: We found 19 patients carrying a de novo mutation of SCN8A, representing 3% of our cohort, with 9 mutations being novel. Age at onset of epilepsy was 1 day to 16 months. We found two modes of onset: 12 patients had slowly emerging onset with rare and/or subtle seizures and normal interictal EEG (group 1). The first event was either acute generalized tonic-clonic seizure (GTCS; Group 1a, n = 6) or episodes of myoclonic jerks that were often mistaken for sleep-related movements or other movement disorders (Group 1b, n = 6). Seven patients had a sudden onset of frequent tonic seizures or epileptic spasms with abnormal interictal EEG leading to rapid diagnosis of epileptic encephalopathy. Sodium channel blockers were effective or nonaggravating in most cases. SIGNIFICANCE: SCN8A is the third most prevalent early onset epileptic encephalopathy gene and is associated with two modes of onset of epilepsy.

6.
Eur J Paediatr Neurol ; 23(3): 448-455, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30862413

RESUMO

Mutations in ATP1A3 lead to different phenotypes having in common acute neurological decompensation episodes triggered by a specific circumstance and followed by sequelae. Alongside Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, Sensorineural hearing loss syndrome (CAPOS), a new Relapsing Encephalopathy with Cerebellar Ataxia (RECA) phenotype was published in 2015. We describe herein eight new pediatric cases. Most of them had no specific history when the first neurological decompensation episode occurred, before the age of 5 years, triggered by fever with severe paralytic hypotonia followed by ataxia with or without abnormal movements. Neurological sequelae with ataxia as the predominant symptom were present after the first episode in three cases and after at least one subsequent relapse in five cases. Five of the eight cases had a familial involvement with one of the two parents affected. The phenotype-genotype correlation is unequivocal with the causal substitution always located at position 756. The pathophysiology of the dysfunctions of the mutated ATPase pump, triggered by fever is unknown. Severe recurrent neurological decompensation episodes triggered by fever, without any metabolic cause, should lead to the sequencing of ATP1A3.


Assuntos
Encefalopatias/genética , Ataxia Cerebelar/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Criança , Feminino , Febre/complicações , Estudos de Associação Genética , Humanos , Masculino , Mutação , Fenótipo , Recidiva
7.
Eur J Hum Genet ; 27(5): 738-746, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30679813

RESUMO

Determining pathogenicity of genomic variation identified by next-generation sequencing techniques can be supported by recurrent disruptive variants in the same gene in phenotypically similar individuals. However, interpretation of novel variants in a specific gene in individuals with mild-moderate intellectual disability (ID) without recognizable syndromic features can be challenging and reverse phenotyping is often required. We describe 24 individuals with a de novo disease-causing variant in, or partial deletion of, the F-box only protein 11 gene (FBXO11, also known as VIT1 and PRMT9). FBXO11 is part of the SCF (SKP1-cullin-F-box) complex, a multi-protein E3 ubiquitin-ligase complex catalyzing the ubiquitination of proteins destined for proteasomal degradation. Twenty-two variants were identified by next-generation sequencing, comprising 2 in-frame deletions, 11 missense variants, 1 canonical splice site variant, and 8 nonsense or frameshift variants leading to a truncated protein or degraded transcript. The remaining two variants were identified by array-comparative genomic hybridization and consisted of a partial deletion of FBXO11. All individuals had borderline to severe ID and behavioral problems (autism spectrum disorder, attention-deficit/hyperactivity disorder, anxiety, aggression) were observed in most of them. The most relevant common facial features included a thin upper lip and a broad prominent space between the paramedian peaks of the upper lip. Other features were hypotonia and hyperlaxity of the joints. We show that de novo variants in FBXO11 cause a syndromic form of ID. The current series show the power of reverse phenotyping in the interpretation of novel genetic variances in individuals who initially did not appear to have a clear recognizable phenotype.

9.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167850

RESUMO

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Assuntos
Proteínas de Transporte/genética , Canalopatias/genética , Deficiências do Desenvolvimento/genética , Marcadores Genéticos , Variação Genética , Proteínas de Membrana/genética , Canais de Sódio/genética , Adolescente , Adulto , Canalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Adulto Jovem
10.
J Neurol Sci ; 391: 31-39, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30103967

RESUMO

BACKGROUND: Exacerbation of hyperkinesia is a life-threatening complication of dyskinetic movement disorders, which can lead to multi-organ failure and even to death. GNAO1 has been recently identified to be involved in the pathogenesis of early infantile epileptic encephalopathy and movement disorders. Patients with GNAO1 mutations can present with a severe, progressive hyperkinetic movement disorder with prolonged life-threatening exacerbations, which are refractory to most anti-dystonic medication. OBJECTIVE: The objective was to investigate the evolution of symptoms and the response to deep brain stimulation of the globus pallidus internus (GPi-DBS) in patients with different GNAO1 mutations. METHODS: We report six patients presenting with global motor retardation, reduced muscle tone and recurrent episodes of severe, life-threatening hyperkinesia with dystonia, choreoathetosis, and ballism since early childhood. Five of them underwent GPi-DBS. RESULTS: The genetic workup revealed mutations in GNAO1 for all six patients. These encompass a new splice site mutation (c.723+1G>T) in patient 1, a new missense mutation (c.610G>C; p.Gly204Arg) in patient 2, a heterozygous mutation (c.625>T; p.Arg209Cys) in patients 3 and 4, and a heterozygous mutation (c.709G>A; p.Glu237Lys) in patients 5 and 6. By intervention with GPi-DBS the severe paroxysmal hyperkinetic exacerbations could be stopped in five patients. One patient is still under evaluation for neuromodulation. CONCLUSION: In complex movement disorders of unsolved etiology clinical WES can rapidly streamline pathogenic genes. We identified two novel GNAO1 mutations. GPi-DBS can be an effective and life-saving treatment option for patients with GNAO1 mutations and has to be considered early.

11.
Orphanet J Rare Dis ; 13(1): 86, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012219

RESUMO

BACKGROUND: ATP8A2 mutations have recently been described in several patients with severe, early-onset hypotonia and cognitive impairment. The aim of our study was to characterize the clinical phenotype of patients with ATP8A2 mutations. METHODS: An observational study was conducted at multiple diagnostic centres. Clinical data is presented from 9 unreported and 2 previously reported patients with ATP8A2 mutations. We compare their features with 3 additional patients that have been previously reported in the medical literature. RESULTS: Eleven patients with biallelic ATP8A2 mutations were identified, with a mean age of 9.4 years (range 2.5-28 years). All patients with ATP8A2 mutations (100%) demonstrated developmental delay, severe hypotonia and movement disorders, specifically chorea or choreoathetosis (100%), dystonia (27%) and facial dyskinesia (18%). Optic atrophy was observed in 78% of patients for whom funduscopic examination was performed. Symptom onset in all (100%) was noted before 6 months of age, with 70% having symptoms noted at birth. Feeding difficulties were common (91%) although most patients were able to tolerate pureed or thickened feeds, and 3 patients required gastrostomy tube insertion. MRI of the brain was normal in 50% of the patients. A smaller proportion was noted to have mild cortical atrophy (30%), delayed myelination (20%) and/or hypoplastic optic nerves (20%). Functional studies were performed on differentiated induced pluripotent cells from one child, which confirmed a decrease in ATP8A2 expression compared to control cells. CONCLUSIONS: ATP8A2 gene mutations have emerged as the cause of a novel neurological phenotype characterized by global developmental delays, severe hypotonia and hyperkinetic movement disorders, the latter being an important distinguishing feature. Optic atrophy is common and may only become apparent in the first few years of life, necessitating repeat ophthalmologic evaluation in older children. Early recognition of the cardinal features of this condition will facilitate diagnosis of this complex neurologic disorder.

12.
Genet Med ; 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29997391

RESUMO

PURPOSE: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes. METHODS: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes. RESULTS: We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant. CONCLUSION: Singleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).

13.
Brain Dev ; 40(9): 768-774, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29861155

RESUMO

OBJECTIVE: Heterozygous mutations in the ATP1A3 gene are responsible for various neurological disorders, ranging from early-onset alternating hemiplegia of childhood to adult-onset dystonia-parkinsonism. Next generation sequencing allowed the description of other phenotypes, including early-onset epileptic encephalopathy in two patients. We report on three more patients carrying ATP1A3 mutations with a close phenotype and discuss the relationship of this phenotype to alternating hemiplegia of childhood. METHODS: The patients' DNA underwent next generation sequencing. A retrospective analysis of clinical case records is reported. RESULTS: Each of the three patients had an unreported heterozygous de novo sequence variant in ATP1A3. These patients shared a similar phenotype characterized by early-onset attacks of movement disorders, some of which proved to be epileptic, and severe developmental delay. (Hemi)plegic attacks had not been considered before genetic testing. SIGNIFICANCE: Together with the two previously reported cases, our patients confirm that ATP1A3 mutations are associated with a phenotype combining features of early-onset encephalopathy, epilepsy and dystonic fits, as in the most severe forms of alternating hemiplegia of childhood, but in which (hemi)plegic attacks are absent or only suspected retrospectively.


Assuntos
Epilepsia/genética , Transtornos dos Movimentos/genética , Mutação , Convulsões/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Hemiplegia/genética , Hemiplegia/fisiopatologia , Humanos , Masculino , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/fisiopatologia , Convulsões/diagnóstico , Convulsões/fisiopatologia
14.
Eur J Hum Genet ; 26(7): 960-971, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29681619

RESUMO

Deficiency of adenosine deaminase 2 (DADA2) is a recently described autoinflammatory disorder. Genetic analysis is required to confirm the diagnosis. We aimed to describe the identifying symptoms and genotypes of patients referred to our reference centres and to improve the indications for genetic testing. DNA from 66 patients with clinically suspected DADA2 were sequenced by Sanger or next-generation sequencing. Detailed epidemiological, clinical and biological features were collected by use of a questionnaire and were compared between patients with and without genetic confirmation of DADA2. We identified 13 patients (19.6%) carrying recessively inherited mutations in ADA2 that were predicted to be deleterious. Eight patients were compound heterozygous for mutations. Seven mutations were novel (4 missense variants, 2 predicted to affect mRNA splicing and 1 frameshift). The mean age of the 13 patients with genetic confirmation was 12.7 years at disease onset and 20.8 years at diagnosis. Phenotypic manifestations included fever (85%), vasculitis (85%) and neurological disorders (54%). Features best associated with a confirmatory genotype included fever with neurologic or cutaneous attacks (odds ratio [OR] 10.71, p = 0.003 and OR 10.9, p < 0.001), fever alone (OR 8.1, p = 0.01), and elevated C-reactive protein (CRP) level with neurologic involvement (OR 6.63, p = 0.017). Our proposed decision tree may help improve obtaining genetic confirmation of DADA2 in the context of autoinflammatory symptoms. Prerequisites for quick and low-cost Sanger analysis include one typical cutaneous or neurological sign, one marker of inflammation (fever or elevated CRP level), and recurrent or chronic attacks in adults.

15.
Epilepsia ; 59(2): 389-402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315614

RESUMO

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Ataxia/complicações , Ataxia/genética , Ataxia/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/complicações , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Resultado do Tratamento , Ácido Valproico/uso terapêutico , Adulto Jovem
16.
Brain ; 140(10): 2550-2556, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969374

RESUMO

Hypomyelinating leukodystrophies are genetically heterogeneous disorders with overlapping clinical and neuroimaging features reflecting variable abnormalities in myelin formation. We report on the identification of biallelic inactivating mutations in NKX6-2, a gene encoding a transcription factor regulating multiple developmental processes with a main role in oligodendrocyte differentiation and regulation of myelin-specific gene expression, as the cause underlying a previously unrecognized severe variant of hypomyelinating leukodystrophy. Five affected subjects (three unrelated families) were documented to share biallelic inactivating mutations affecting the NKX6-2 homeobox domain. A trio-based whole exome sequencing analysis in the first family detected a homozygous frameshift change [c.606delinsTA; p.(Lys202Asnfs*?)]. In the second family, homozygosity mapping coupled to whole exome sequencing identified a homozygous nucleotide substitution (c.565G>T) introducing a premature stop codon (p.Glu189*). In the third family, whole exome sequencing established compound heterozygosity for a non-conservative missense change affecting a key residue participating in DNA binding (c.599G>A; p.Arg200Gln) and a nonsense substitution (c.589C>T; p.Gln197*), in both affected siblings. The clinical presentation was homogeneous, with four subjects having severe motor delays, nystagmus and absent head control, and one individual showing gross motor delay at the age of 6 months. All exhibited neuroimaging that was consistent with hypomyelination. These findings define a novel, severe form of leukodystrophy caused by impaired NKX6-2 function.


Assuntos
Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Leucoencefalopatias/genética , Mutação/genética , Adolescente , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Potenciais Evocados Auditivos do Tronco Encefálico , Saúde da Família , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Imagem por Ressonância Magnética , Masculino , Modelos Moleculares
17.
Case Rep Psychiatry ; 2017: 7582780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626596

RESUMO

We report the case of a young boy with nonverbal autism and intellectual disability, with a rare de novo 1q21.3 microdeletion. The patient had early and extreme self-injurious behaviours that led to blindness, complicated by severe developmental regression. A significant reduction in the self-injurious behaviours and the recovery of developmental dynamics were attained in a multidisciplinary neurodevelopmental inpatient unit. Improvement was obtained after managing all causes of somatic pains, using opiate blockers and stabilizing the patient's mood. We offered both sensorimotor developmental approach with therapeutic body wrap and specific psychoeducation adapted to his blindness condition for improving his communication abilities.

18.
Brain ; 140(5): 1316-1336, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379373

RESUMO

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/fisiologia , Transtornos do Neurodesenvolvimento/genética , Bloqueadores dos Canais de Sódio/uso terapêutico , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Dinamarca/epidemiologia , Epilepsia/epidemiologia , Feminino , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto Jovem
19.
Hum Genet ; 136(4): 463-479, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283832

RESUMO

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas Repressoras/genética , Humanos
20.
J Med Genet ; 54(6): 371-380, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28289185

RESUMO

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.


Assuntos
Face/anormalidades , Síndromes Orofaciodigitais/genética , Anormalidades Múltiplas/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Feminino , Heterozigoto , Humanos , Masculino , Mutação/genética , Doenças Renais Policísticas/genética , Proteínas/genética , Retinite Pigmentosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA