Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 10: 2414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681302

RESUMO

Ebola virus infection of human dendritic cells (DCs) induces atypical adaptive immune responses and thereby exacerbates Ebola virus disease (EVD). Human DCs, infected with Ebola virus aberrantly express low levels of the DC activation markers CD80, CD86, and MHC class II. The T cell responses ensuing are commonly anergic rather than protective against EVD. We hypothesize that DCs derived from potential reservoir hosts such as bats, which do not develop disease signs in response to Ebola virus infection, would exhibit features associated with activation. In this study, we have examined Zaire ebolavirus (EBOV) infection of DCs derived from the Angolan free-tailed bat species, Mops condylurus. This species was previously identified as permissive to EBOV infection in vivo, in the absence of disease signs. M. condylurus has also been recently implicated as the reservoir host for Bombali ebolavirus, a virus species that is closely related to EBOV. Due to the absence of pre-existing M. condylurus species-specific reagents, we characterized its de novo assembled transcriptome and defined its phylogenetic similarity to other mammals, which enabled the identification of cross-reactive reagents for M. condylurus bone marrow-derived DC (bat-BMDC) differentiation and immune cell phenotyping. Our results reveal that bat-BMDCs are susceptible to EBOV infection as determined by detection of EBOV specific viral RNA (vRNA). vRNA increased significantly 72 h after EBOV-infection and was detected in both cells and in culture supernatants. Bat-BMDC infection was further confirmed by the observation of GFP expression in DC cultures infected with a recombinant GFP-EBOV. Bat-BMDCs upregulated CD80 and chemokine ligand 3 (CCL3) transcripts in response to EBOV infection, which positively correlated with the expression levels of EBOV vRNA. In contrast to the aberrant responses to EBOV infection that are typical for human-DC, our findings from bat-BMDCs provide evidence for an immunological basis of asymptomatic EBOV infection outcomes.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31781515

RESUMO

Francisella tularensis is an intracellular pleomorphic bacterium and the causative agent of tularemia, a zoonotic disease with a wide host range. Among the F. tularensis subspecies, especially F. tularensis subsp. holarctica is of clinical relevance for European countries. The study presented herein focuses namely on genetic diversity and spatial segregation of F. tularensis subsp. holarctica in Germany, as still limited information is available. The investigation is based on the analysis of 34 F. tularensis subsp. holarctica isolates and one draft genome from an outbreak strain. The isolates were cultured from sample material being that of primarily human patients (n = 25) and free-living animals (n = 9). For six of 25 human isolates, epidemiological links between disease onset and tick bites could be established, confirming the importance of arthropod linked transmission of tularemia in Germany. The strains were assigned to three of four major F. tularensis subsp. holarctica clades: B.4, B.6, and B.12. Thereby, B.6 and B.12 clade members were predominantly found; only one human isolate was assigned to clade B.4. Also, it turned out that eight isolates which caused pneumonia in patients clustered into the B.6 clade. Altogether, eight different final subclades were assigned to clade B.6 (biovar I, erythromycin sensitive) and six to B.12 (biovar II, erythromycin resistant) in addition to one new final B.12 subclade. Moreover, for 13 human and 3 animal isolates, final subclade subdivisions were not assigned (B.12 subdivisions B.33 and B.34, and B.6 subdivision B.45) because official nomenclatures are not available yet. This gives credit to the genetic variability of F. tularensis subsp. holarctica strains in Germany. The results clearly point out that the given genetic diversity in Germany seems to be comparably high to that found in other European countries including Scandinavian regions. A spatial segregation of B.6 and B.12 strains was found and statistically confirmed, and B.12 clade members were predominantly found in eastern parts and B.6 members more in western to southern parts of Germany. The portion of B.12 clade members in northeastern parts of Germany was 78.5% and in southwestern parts 1.9%.

3.
J Extracell Vesicles ; 8(1): 1656042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552133

RESUMO

Recent studies on extracellular RNA raised awareness that extracellular vesicles (EVs) isolated from cultured cells may co-purify RNAs derived from media supplements such as fetal bovine serum (FBS) confounding EV-associated RNA. Defined culture media supplemented with a range of nutrient components provide an alternative to FBS addition and allow EV-collection under full medium conditions avoiding starvation and cell stress during the collection period. However, the potential contribution of serum-free media supplements to EV-RNA contamination has remained elusive and has never been assessed. Here, we report that RNA isolated from EVs harvested from cells under serum-replacement conditions includes miRNA contaminants carried into the sample by defined media components. Subjecting unconditioned, EV-free medium to differential centrifugation followed by reverse transcription quantitative PCR (RT-qPCR) on RNA isolated from the pellet resulted in detection of miRNAs that had been classified as EV-enriched by RNA-seq or RT-qPCR of an isolated EV-fraction. Ribonuclease (RNase-A) and detergent treatment removed most but not all of the contaminating miRNAs. Further analysis of the defined media constituents identified Catalase as a main source of miRNAs co-isolating together with EVs. Hence, miRNA contaminants can be carried into EV-samples even under serum-free harvesting conditions using culture media that are expected to be chemically defined. Formulation of miRNA-free media supplements may provide a solution to collect EVs clean from confounding miRNAs, which however still remains a challenging task. Differential analysis of EVs collected under full medium and supplement-deprived conditions appears to provide a strategy to discriminate confounding and EV-associated RNA. In conclusion, we recommend careful re-evaluation and validation of EV small RNA-seq and RT-qPCR datasets by determining potential medium background.

4.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31202576

RESUMO

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Assuntos
DNA Topoisomerases Tipo II/genética , Instabilidade Genômica/genética , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Translocação Genética/genética , Fator de Ligação a CCCTC/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromossomos/química , Cromossomos/genética , DNA/genética , Quebras de DNA de Cadeia Dupla , Humanos , Leucemia/genética , Leucemia/patologia
5.
Hum Mutat ; 40(7): 865-878, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31026367

RESUMO

Mendelian diseases have shown to be an and efficient model for connecting genotypes to phenotypes and for elucidating the function of genes. Whole-exome sequencing (WES) accelerated the study of rare Mendelian diseases in families, allowing for directly pinpointing rare causal mutations in genic regions without the need for linkage analysis. However, the low diagnostic rates of 20-30% reported for multiple WES disease studies point to the need for improved variant pathogenicity classification and causal variant prioritization methods. Here, we present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an automated computational framework for identification of causal genetic variants (coding/splicing single-nucleotide variants and small insertions and deletions) for rare diseases using WES of families or parent-child trios. eDiVA combines next-generation sequencing data analysis, comprehensive functional annotation, and causal variant prioritization optimized for familial genetic disease studies. eDiVA features a machine learning-based variant pathogenicity predictor combining various genomic and evolutionary signatures. Clinical information, such as disease phenotype or mode of inheritance, is incorporated to improve the precision of the prioritization algorithm. Benchmarking against state-of-the-art competitors demonstrates that eDiVA consistently performed as a good or better than existing approach in terms of detection rate and precision. Moreover, we applied eDiVA to several familial disease cases to demonstrate its clinical applicability.

6.
Sci Rep ; 9(1): 4579, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872671

RESUMO

Juvenile idiopathic arthritis (JIA) is a complex rheumatic disease with both autoimmune and autoinflammatory components. Recently, familial cases of systemic-onset JIA have been attributed to mutations in LACC1/FAMIN. We describe three affected siblings from a Moroccan consanguineous family with an early-onset chronic, symmetric and erosive arthritis previously diagnosed as rheumatoid factor (RF)-negative polyarticular JIA. Autozygosity mapping identified four homozygous regions shared by all patients, located in chromosomes 3, 6 (n:2) and 13, containing over 330 genes. Subsequent whole exome sequencing identified two potential candidate variants within these regions (in FARS2 and LACC1/FAMIN). Genotyping of a cohort of healthy Moroccan individuals (n: 352) and bioinformatics analyses finally supported the frameshift c.128_129delGT mutation in the LACC1/FAMIN gene, leading to a truncated protein (p.Cys43Tyrfs*6), as the most probable causative gene defect. Additional targeted sequencing studies performed in patients with systemic-onset JIA (n:23) and RF-negative polyarticular JIA (n: 44) revealed no pathogenic LACC1/FAMIN mutations. Our findings support the homozygous genotype in the LACC1/FAMIN gene as the defect underlying the family here described with a recessively inherited severe inflammatory joint disease. Our evidences provide further support to the involvement of LACC1/FAMIN deficiency in different types of JIA in addition to the initially described systemic-onset JIA.

7.
Mol Cell ; 70(4): 730-744.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706538

RESUMO

Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Genoma Humano , Proteína HMGB2/metabolismo , Fator de Ligação a CCCTC/genética , Proliferação de Células , Senescência Celular , Cromatina/genética , Proteína HMGB2/genética , Células Endoteliais da Veia Umbilical Humana , Humanos
8.
Sci Rep ; 7(1): 13124, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030609

RESUMO

Tumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian model for driver prediction. We demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.


Assuntos
Cromatina/genética , Exoma/genética , Neoplasias/genética , Teorema de Bayes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento Completo do Exoma
9.
PLoS One ; 10(12): e0146035, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26716990

RESUMO

Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, result in heterogeneous human neurological disorders, including familial and sporadic hemiplegic migraine along with episodic and progressive forms of ataxia. Hemiplegic Migraine (HM) mutations induce gain-of-channel function, mainly by shifting channel activation to lower voltages, whereas ataxia mutations mostly produce loss-of-channel function. However, some HM-linked gain-of-function mutations are also associated to congenital ataxia and/or cerebellar atrophy, including the deletion of a highly conserved phenylalanine located at the S6 pore region of α1A domain III (ΔF1502). Functional studies of ΔF1502 CaV2.1 channels, expressed in Xenopus oocytes, using the non-physiological Ba2+ as the charge carrier have only revealed discrete alterations in channel function of unclear pathophysiological relevance. Here, we report a second case of congenital ataxia linked to the ΔF1502 α1A mutation, detected by whole-exome sequencing, and analyze its functional consequences on CaV2.1 human channels heterologously expressed in mammalian tsA-201 HEK cells, using the physiological permeant ion Ca2+. ΔF1502 strongly decreases the voltage threshold for channel activation (by ~ 21 mV), allowing significantly higher Ca2+ current densities in a range of depolarized voltages with physiological relevance in neurons, even though maximal Ca2+ current density through ΔF1502 CaV2.1 channels is 60% lower than through wild-type channels. ΔF1502 accelerates activation kinetics and slows deactivation kinetics of CaV2.1 within a wide range of voltage depolarization. ΔF1502 also slowed CaV2.1 inactivation kinetic and shifted the inactivation curve to hyperpolarized potentials (by ~ 28 mV). ΔF1502 effects on CaV2.1 activation and deactivation properties seem to be of high physiological relevance. Thus, ΔF1502 strongly promotes Ca2+ influx in response to either single or trains of action potential-like waveforms of different durations. Our observations support a causative role of gain-of-function CaV2.1 mutations in congenital ataxia, a neurodevelopmental disorder at the severe-most end of CACNA1A-associated phenotypic spectrum.


Assuntos
Ataxia/genética , Canais de Cálcio Tipo N/genética , Deleção de Sequência/genética , Ataxia/congênito , Ataxia/patologia , Encéfalo/patologia , Cálcio/metabolismo , Criança , Humanos , Imagem por Ressonância Magnética , Masculino , Neuroimagem , Deleção de Sequência/fisiologia
10.
Hum Mol Genet ; 24(20): 5677-86, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188006

RESUMO

Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.


Assuntos
Axônios/patologia , Tremor Essencial/genética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Oligodendroglia/patologia , Adulto , Animais , Análise Mutacional de DNA , Tremor Essencial/metabolismo , Tremor Essencial/fisiopatologia , Exoma , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Linhagem , Transporte Proteico , Adulto Jovem , Peixe-Zebra/metabolismo
11.
Front Plant Sci ; 5: 182, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847340

RESUMO

Soil salinity affects a large proportion of rural area and limits agricultural productivity. To investigate differential adaptation to soil salinity, we studied salt tolerance of 18 varieties of Oryza sativa using a hydroponic culture system. Based on visual inspection and photosynthetic parameters, cultivars were classified according to their tolerance level. Additionally, biomass parameters were correlated with salt tolerance. Polyamines have frequently been demonstrated to be involved in plant stress responses and therefore soluble leaf polyamines were measured. Under salinity, putrescine (Put) content was unchanged or increased in tolerant, while dropped in sensitive cultivars. Spermidine (Spd) content was unchanged at lower NaCl concentrations in all, while reduced at 100 mM NaCl in sensitive cultivars. Spermine (Spm) content was increased in all cultivars. A comparison with data from 21 cultivars under long-term, moderate drought stress revealed an increase of Spm under both stress conditions. While Spm became the most prominent polyamine under drought, levels of all three polyamines were relatively similar under salt stress. Put levels were reduced under both, drought and salt stress, while changes in Spd were different under drought (decrease) or salt (unchanged) conditions. Regulation of polyamine metabolism at the transcript level during exposure to salinity was studied for genes encoding enzymes involved in the biosynthesis of polyamines and compared to expression under drought stress. Based on expression profiles, investigated genes were divided into generally stress-induced genes (ADC2, SPD/SPM2, SPD/SPM3), one generally stress-repressed gene (ADC1), constitutively expressed genes (CPA1, CPA2, CPA4, SAMDC1, SPD/SPM1), specifically drought-induced genes (SAMDC2, AIH), one specifically drought-repressed gene (CPA3) and one specifically salt-stress repressed gene (SAMDC4), revealing both overlapping and specific stress responses under these conditions.

12.
Nucleic Acids Res ; 41(Web Server issue): W575-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23609545

RESUMO

Mitochondria and plastids (chloroplasts) are cell organelles of endosymbiotic origin that possess their own genetic information. Most organellar DNAs map as circular double-stranded genomes. Across the eukaryotic kingdom, organellar genomes display great size variation, ranging from ∼15 to 20 kb (the size of the mitochondrial genome in most animals) to >10 Mb (the size of the mitochondrial genome in some lineages of flowering plants). We have developed OrganellarGenomeDraw (OGDRAW), a suite of software tools that enable users to create high-quality visual representations of both circular and linear annotated genome sequences provided as GenBank files or accession numbers. Although all types of DNA sequences are accepted as input, the software has been specifically optimized to properly depict features of organellar genomes. A recent extension facilitates the plotting of quantitative gene expression data, such as transcript or protein abundance data, directly onto the genome map. OGDRAW has already become widely used and is available as a free web tool (http://ogdraw.mpimp-golm.mpg.de/). The core processing components can be downloaded as a Perl module, thus also allowing for convenient integration into custom processing pipelines.


Assuntos
Genoma Mitocondrial , Genomas de Plastídeos , Mapeamento Físico do Cromossomo/métodos , Software , Gráficos por Computador , Expressão Gênica , Internet
13.
Nucleic Acids Res ; 39(4): 1427-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20965967

RESUMO

Like bacterial genes, most plastid (chloroplast) genes are arranged in operons and transcribed as polycistronic mRNAs. Plastid protein biosynthesis occurs on bacterial-type 70S ribosomes and translation initiation of many (but not all) mRNAs is mediated by Shine-Dalgarno (SD) sequences. To study the mechanisms of SD sequence recognition, we have analyzed translation initiation from mRNAs containing multiple SD sequences. Comparing translational efficiencies of identical transgenic mRNAs in Escherichia coli and plastids, we find surprising differences between the two systems. Most importantly, while internal SD sequences are efficiently recognized in E. coli, plastids exhibit a bias toward utilizing predominantly the 5'-most SD sequence. We propose that inefficient recognition of internal SD sequences provides the raison d'être for most plastid polycistronic transcripts undergoing post-transcriptional cleavage into monocistronic mRNAs.


Assuntos
Cloroplastos/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/química , Bactérias/genética , Sequência de Bases , Escherichia coli/genética , Expressão Gênica , Genes Reporter , Tabaco/genética
14.
Plant J ; 64(5): 851-63, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105931

RESUMO

Ribonuclease E (RNase E) represents a key enzyme in bacterial RNA metabolism. It plays multifarious roles in RNA processing and also initiates degradation of mRNA by endonucleolytic cleavage. Plastids (chloroplasts) are derived from formerly free-living bacteria and have largely retained eubacterial gene expression mechanisms. Here we report the functional characterization of a chloroplast RNase E that is encoded by a single-copy nuclear gene in the model plant Arabidopsis thaliana. Analysis of knockout plants revealed that, unlike in bacteria, RNase E is not essential for survival. Absence of RNase E results in multiple defects in chloroplast RNA metabolism. Most importantly, polycistronic precursor transcripts overaccumulate in the knockout plants, while several mature monocistronic mRNAs are strongly reduced, suggesting an important function of RNase E in intercistronic processing of primary transcripts from chloroplast operons. We further show that disturbed maturation of a transcript encoding essential ribosomal proteins results in plastid ribosome deficiency and, therefore, provides a molecular explanation for the observed mutant phenotype.


Assuntos
Arabidopsis/genética , Cloroplastos/enzimologia , Endorribonucleases/metabolismo , Poliadenilação , RNA de Cloroplastos/metabolismo , Ribossomos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
15.
J Biochem Mol Biol ; 40(6): 875-80, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18047781

RESUMO

Glucose oxidase (GOD) is an oxidoreductase catalyzing the reaction of glucose and oxygen to peroxide and gluconolacton (EC 1.1.3.4.). GOD is a widely used enzyme in biotechnology. Therefore the production of monoclonal antibodies and antibody fragments to GOD are of interest in bioanalytics and even tumor therapy. We describe here the generation of a panel of monoclonal antibodies to native and heat inactivated GOD. One of the hybridomas, E13BC8, was used for cloning of a single chain antibody (scFv). This scFv was expressed in Escherichia coli XL1-blue with the help of the vector system pOPE101. The scFv was isolated from the periplasmic fraction and detected by western blotting. It reacts specifically with soluble active GOD but does not recognize denatured GOD adsorbed to the solid phase. The same binding properties were also found for the monoclonal antibody E13BC8.


Assuntos
Anticorpos Monoclonais/genética , Glucose Oxidase/imunologia , Fragmentos de Imunoglobulinas/genética , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Aspergillus niger/enzimologia , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , Escherichia coli/genética , Hibridomas/imunologia , Fragmentos de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/biossíntese , Cadeias Leves de Imunoglobulina/genética , Camundongos , Dados de Sequência Molecular
16.
Curr Genet ; 52(5-6): 267-74, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17957369

RESUMO

Mitochondria and plastids are DNA-containing cell organelles whose genomes occur at high copy numbers per cell. Organellar genomes vary greatly in size ranging from approximately 15 kb for some animal mitochondrial genomes to more than 2 Mb for some plant mitochondrial genomes. The vast majority of organellar genomes map as circular molecules that are difficult to illustrate by available commercial or free software tools. Thus, published genome maps are extremely heterogeneous in design, often tediously drawn semi-manually and lack any consensus in display. Here, we present a new web-based tool, OrganellarGenomeDRAW (OGDRAW), which produces high-resolution custom graphical maps of DNA sequences as stored in standard GenBank format entries. GenBank data can be provided as either file uploads or accession numbers. The program is specially optimized for the display of chloroplast and mitochondrial genomes but can also be used to depict other circular DNA sequences. The design of the program core as a Perl module with an object-oriented interface allows easy integration into custom scripts.


Assuntos
Gráficos por Computador , Genoma Mitocondrial/genética , Genomas de Plastídeos/genética , Mitocôndrias/genética , Plastídeos/genética , Software , Mapeamento Cromossômico , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA