Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Angew Chem Int Ed Engl ; 57(41): 13618-13623, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30133113


Layered transition metal compounds represent a major playground to explore unconventional electric or magnetic properties. In that framework, topochemical approaches that mostly preserve the topology of layered reactants have been intensively investigated to tune properties and/or design new materials. Topochemical reactions often involve the insertion or deinsertion of a chemical element accompanied by a change of oxidation state of the cations only. Conversely, cases where anions play the role of redox centers are very scarce. Here we show that the insertion of copper into two dimensional precursors containing chalcogen dimers (Q2 )2- (Q=S, Se) can produce layered materials with extended (CuQ) sheets. The reality of this topochemical reaction is demonstrated here for different pristine materials, namely La2 O2 S2 , Ba2 F2 S2 , and LaSe2 . Therefore, this work opens up a new synthetic strategy to design layered transition metal compounds from precursors containing polyanionic redox centers.

Inorg Chem ; 55(6): 2923-8, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26942451


The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.