Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Filtros adicionais











Tipo de estudo
Intervalo de ano
1.
Artigo em Inglês | MEDLINE | ID: mdl-31484767

RESUMO

Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1ß secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1ß at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.

2.
J Exp Med ; 216(9): 2057-2070, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31270247

RESUMO

Vaccination against measles, mumps, and rubella (MMR) and yellow fever (YF) with live attenuated viruses can rarely cause life-threatening disease. Severe illness by MMR vaccines can be caused by inborn errors of type I and/or III interferon (IFN) immunity (mutations in IFNAR2, STAT1, or STAT2). Adverse reactions to the YF vaccine have remained unexplained. We report two otherwise healthy patients, a 9-yr-old boy in Iran with severe measles vaccine disease at 1 yr and a 14-yr-old girl in Brazil with viscerotropic disease caused by the YF vaccine at 12 yr. The Iranian patient is homozygous and the Brazilian patient compound heterozygous for loss-of-function IFNAR1 variations. Patient-derived fibroblasts are susceptible to viruses, including the YF and measles virus vaccine strains, in the absence or presence of exogenous type I IFN. The patients' fibroblast phenotypes are rescued with WT IFNAR1 Autosomal recessive, complete IFNAR1 deficiency can result in life-threatening complications of vaccination with live attenuated measles and YF viruses in previously healthy individuals.

3.
J Exp Med ; 216(8): 1777-1790, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31213488

RESUMO

Fulminant viral hepatitis (FVH) is a devastating and unexplained condition that strikes otherwise healthy individuals during primary infection with common liver-tropic viruses. We report a child who died of FVH upon infection with hepatitis A virus (HAV) at age 11 yr and who was homozygous for a private 40-nucleotide deletion in IL18BP, which encodes the IL-18 binding protein (IL-18BP). This mutation is loss-of-function, unlike the variants found in a homozygous state in public databases. We show that human IL-18 and IL-18BP are both secreted mostly by hepatocytes and macrophages in the liver. Moreover, in the absence of IL-18BP, excessive NK cell activation by IL-18 results in uncontrolled killing of human hepatocytes in vitro. Inherited human IL-18BP deficiency thus underlies fulminant HAV hepatitis by unleashing IL-18. These findings provide proof-of-principle that FVH can be caused by single-gene inborn errors that selectively disrupt liver-specific immunity. They also show that human IL-18 is toxic to the liver and that IL-18BP is its antidote.

4.
J Exp Med ; 215(10): 2567-2585, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143481

RESUMO

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.

5.
J Exp Med ; 214(7): 1949-1972, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28606988

RESUMO

MDA5 is a cytosolic sensor of double-stranded RNA (ds)RNA including viral byproducts and intermediates. We studied a child with life-threatening, recurrent respiratory tract infections, caused by viruses including human rhinovirus (HRV), influenza virus, and respiratory syncytial virus (RSV). We identified in her a homozygous missense mutation in IFIH1 that encodes MDA5. Mutant MDA5 was expressed but did not recognize the synthetic MDA5 agonist/(ds)RNA mimic polyinosinic-polycytidylic acid. When overexpressed, mutant MDA5 failed to drive luciferase activity from the IFNB1 promoter or promoters containing ISRE or NF-κB sequence motifs. In respiratory epithelial cells or fibroblasts, wild-type but not knockdown of MDA5 restricted HRV infection while increasing IFN-stimulated gene expression and IFN-ß/λ. However, wild-type MDA5 did not restrict influenza virus or RSV replication. Moreover, nasal epithelial cells from the patient, or fibroblasts gene-edited to express mutant MDA5, showed increased replication of HRV but not influenza or RSV. Thus, human MDA5 deficiency is a novel inborn error of innate and/or intrinsic immunity that causes impaired (ds)RNA sensing, reduced IFN induction, and susceptibility to the common cold virus.


Assuntos
Helicase IFIH1 Induzida por Interferon/genética , Mutação , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia , Antivirais/farmacologia , Sequência de Bases , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica/efeitos dos fármacos , Genes Recessivos/genética , Heterozigoto , Homozigoto , Interações Hospedeiro-Patógeno , Humanos , Helicase IFIH1 Induzida por Interferon/deficiência , Interferons/farmacologia , Masculino , Linhagem
6.
J Immunol ; 188(8): 3603-10, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442444

RESUMO

Monocytes can differentiate into various cell types with unique specializations depending on their environment. Under certain inflammatory conditions, monocytes upregulate expression of the dendritic cell marker CD11c together with MHC and costimulatory molecules. These phenotypic changes indicate monocyte differentiation into a specialized subset of dendritic cells (DCs), often referred to as monocyte-derived DCs or inflammatory DCs (iDCs), considered important mediators of immune responses under inflammatory conditions triggered by infection or vaccination. To characterize the relative contribution of cDCs and iDCs under conditions that induce strong immunity to coadministered Ags, we analyzed the behavior of spleen monocytes in response to anti-CD40 treatment. We found that under sterile inflammation in mice triggered by CD40 ligation, spleen monocytes can rapidly and uniformly exhibit signs of activation, including a surface phenotype typically associated with their conversion into DCs. These inflammatory monocytes remain closely related to their monocytic lineage, preserving expression of CD115, scavenging function, tissue distribution and poor capacity for Ag presentation characteristic of their monocyte precursors. In addition, 3-4 d after delivery of the inflammatory stimuli, these cells reverted to a monocyte-associated phenotype typical of the steady state. These findings indicate that, in response to anti-CD40 treatment, spleen monocytes are activated and express certain DC surface markers without acquiring functional characteristics associated with DCs.


Assuntos
Antígeno CD11c/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/metabolismo , Monócitos/metabolismo , Baço/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Biomarcadores/metabolismo , Antígeno CD11c/imunologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos , Monócitos/citologia , Monócitos/imunologia , Fenótipo , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais , Baço/citologia , Baço/efeitos dos fármacos
7.
J Immunol ; 185(4): 2140-6, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20644175

RESUMO

Dendritic cell (DC) maturation is critical for the regulation of T cell responses. The downregulation of endocytosis on maturation is considered a key adaptation that dissociates prior Ag capture by DCs from subsequent T cell engagement. To study the dynamics of Ag capture and presentation in situ, we studied the capacity for Ag uptake by DCs matured in their natural tissue environment. We found that after maturation in vivo, mouse DCs retained a robust capacity to capture soluble Ags. Furthermore, Ags internalized by mature DCs were efficiently presented on MHC class II and cross-presented on MHC class I. These results suggest that under inflammatory conditions, mature DCs may contribute to T cell stimulation without exclusively relying on prior exposure to Ags as immature DC precursors.


Assuntos
Apresentação do Antígeno/imunologia , Antígenos/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endocitose/imunologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Ovalbumina/imunologia , Ovalbumina/farmacologia
8.
PLoS One ; 5(6): e11144, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20585396

RESUMO

BACKGROUND: Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs) that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression. METHODOLOGY/PRINCIPAL FINDINGS: We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells. CONCLUSIONS/SIGNIFICANCE: This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vacinas/imunologia , Animais , Camundongos , Camundongos Knockout
9.
Mol Biochem Parasitol ; 136(2): 265-72, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15478805

RESUMO

Purine nucleoside and nucleobase transporters play a vital role in the metabolism and survival of Trypanosoma brucei because this parasitic protozoan is unable to synthesize purines de novo and thus must acquire preformed purines from its hosts. These parasites express a variety of nucleoside and nucleobase permeases with diverse substrate specificities and distinct patterns of expression during the trypanosome life cycle. We report here that expression of the newly characterized T. brucei nucleoside transporter 10 gene (TbNT10) is up-regulated in the short stumpy form of the life cycle, the bloodstream form of the parasite that is pre-adapted for infection of the tsetse fly vector. Functional expression of TbNT10 in Saccharomyces cerevisiae reveals that the TbNT10 gene encodes an adenosine/guanosine/inosine transporter with apparent Km values of approximately 1 microM and hence is a high affinity purine nucleoside transporter. The restricted expression of TbNT10 during the life cycle suggests that the functional properties of this permease may be specialized to support development and growth of the differentiated short stumpy form or to promote the transformation of short stumpy to procyclic forms within the insect vector.


Assuntos
Proteínas de Transporte de Nucleosídeos/metabolismo , Nucleosídeos de Purina/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA de Protozoário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Protozoários , Cinética , Dados de Sequência Molecular , Proteínas de Transporte de Nucleosídeos/genética , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA