Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
J Vis Exp ; (139)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30295663


Boron carbide (B4C) is one of the hardest materials in existence. However, this attractive property also limits its machineability into complex shapes for high wear, high hardness, and lightweight material applications such as armors. To overcome this challenge, negative additive manufacturing (AM) is employed to produce complex geometries of boron carbides at various length scales. Negative AM first involves gelcasting a suspension into a 3D-printed plastic mold. The mold is then dissolved away, leaving behind a green body as a negative copy. Resorcinol-formaldehyde (RF) is used as a novel gelling agent because unlike traditional hydrogels, there is little to no shrinkage, which allows for extremely complex molds to be used. Furthermore, this gelling agent can be pyrolyzed to leave behind ~50 wt% carbon, which is a highly effective sintering aid for B4C. Due to this highly homogenous distribution of in situ carbon within the B4C matrix, less than 2% porosity can be achieved after sintering. This protocol highlights in detail the methodology for creating near fully dense boron carbide parts with highly complex geometries.

Compostos de Boro/química
Sci Rep ; 7(1): 5344, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706289


Nominally anhydrous minerals formed deep in the mantle and transported to the Earth's surface contain tens to hundreds of ppm wt H2O, providing evidence for the presence of dissolved water in the Earth's interior. Even at these low concentrations, H2O greatly affects the physico-chemical properties of mantle materials, governing planetary dynamics and evolution. The diffusion of hydrogen (H) controls the transport of H2O in the Earth's upper mantle, but is not fully understood for olivine ((Mg, Fe)2SiO4) the most abundant mineral in this region. Here we present new hydrogen self-diffusion coefficients in natural olivine single crystals that were determined at upper mantle conditions (2 GPa and 750-900 °C). Hydrogen self-diffusion is highly anisotropic, with values at 900 °C of 10-10.9, 10-12.8 and 10-11.9 m2/s along [100], [010] and [001] directions, respectively. Combined with the Nernst-Einstein relation, these diffusion results constrain the contribution of H to the electrical conductivity of olivine to be σH = 102.12S/m·CH2O·exp-187kJ/mol/(RT). Comparisons between the model presented in this study and magnetotelluric measurements suggest that plausible H2O concentrations in the upper mantle (≤250 ppm wt) can account for high electrical conductivity values (10-2-10-1 S/m) observed in the asthenosphere.

Environ Sci Technol ; 47(3): 1745-52, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23289811


Defining chemical and mechanical alteration of wellbore cement by CO(2)-rich brines is important for predicting the long-term integrity of wellbores in geologic CO(2) environments. We reacted CO(2)-rich brines along a cement-caprock boundary at 60 °C and pCO(2) = 3 MPa using flow-through experiments. The results show that distinct reaction zones form in response to reactions with the brine over the 8-day experiment. Detailed characterization of the crystalline and amorphous phases, and the solution chemistry show that the zones can be modeled as preferential portlandite dissolution in the depleted layer, concurrent calcium silicate hydrate (CSH) alteration to an amorphous zeolite and Ca-carbonate precipitation in the carbonate layer, and carbonate dissolution in the amorphous layer. Chemical reaction altered the mechanical properties of the core lowering the average Young's moduli in the depleted, carbonate, and amorphous layers to approximately 75, 64, and 34% of the unaltered cement, respectively. The decreased elastic modulus of the altered cement reflects an increase in pore space through mineral dissolution and different moduli of the reaction products.

Dióxido de Carbono/química , Materiais de Construção/análise , Fenômenos Mecânicos , Sais/química , Carbono/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Nanotecnologia , Pós , Soluções , Difração de Raios X