Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 711: 134745, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31822400

RESUMO

In the Northern China Plain (NCP), extreme haze events with high concentrations of fine particles occur frequently during the winter but rarely occur in autumn. In this study, we present a synthetic analysis of particulate constituents during the historically polluted transition period of autumn-winter in 2018, revealing that mixed-type haze episodes are the result of regional transport, homogeneous/heterogeneous conversion, and sandstorm influences. The hydrolysis process of N2O5 at higher relative humidity levels (>70%), which feature an enhanced nitrate oxidation ratio (0.30-0.70) and NO3- concentration (>60 µg m-3), was the driving factor for high PM2.5 mass concentrations during the observation periods. The long-distance transport of sandstorms, characterized by decreasing PM2.5/PM10 ratios (<30%) from the north/northwest, is the most important factor for the explosive growth of PM10 concentration. These results can help us gain a comprehensive understanding of haze formation and highlight the importance of nitrate chemistry in the aqueous phase. The results suggest that persistent NOx emission reduction measures must be made to better achieve air quality standards in Beijing and the NCP region.

2.
Environ Pollut ; 253: 377-383, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31325882

RESUMO

Changzhou, an industrial city in the Yangtze River Delta, has been experiencing serious haze pollution, particularly in winter. However, studies pertaining to the haze in Changzhou are very limited, which makes it difficult to understand the characteristics and formation of winter haze in this area, and develop effective control measures. In this study, we carried out continuous online observation of particulate matter, chemical components, and meteorology in Changzhou in February 2017. Our results showed that haze pollution occurred frequently in Changzhou winter and exhibited two patterns: dry haze with low relative humidity (RH) and wet haze with high RH. Water-soluble inorganic ions (SO42-, NO3-, and NH4+) accounted for ∼52.2% of the PM2.5 mass, of which sulfate was dominant in wet haze periods while nitrate was dominant in other periods. With the deterioration of haze pollution, the proportion of nitrate in PM2.5 increased, while sulfate proportion increased under wet haze and decreased under dry haze. Dry haze and wet haze appeared under slow north wind and south wind, respectively, and strong north wind or sea breeze scavenged pollution. We found that formation of nitrate occurred rapidly in daytime with high concentrations of odd oxygen (Ox = O3 + NO2), whereas formation of sulfate occurred rapidly during nighttime with high RH, indicating that photochemistry and heterogeneous reaction were the major formation mechanisms for nitrate and sulfate, respectively. Through the cluster analysis of 36-h backward trajectories, five sources of air masses from three directions were identified. High PM2.5 concentrations (84.1 µg m-3 on average) usually occurred under the influence of two clusters (46%) from the northwest, indicating that regional transport from northern China aggravated the winter haze pollution in Changzhou. Emission reduction, particularly the mobile sources, and regional joint prevention and control can help to mitigate the winter haze in Changzhou.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , China , Cidades , Umidade , Meteorologia , Nitratos/análise , Óxidos de Nitrogênio/análise , Rios , Estações do Ano , Sulfatos/análise , Vento
3.
J Environ Sci (China) ; 83: 8-20, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221390

RESUMO

With rapid economic growth and urbanization, the Yangtze River Delta (YRD) region in China has experienced serious air pollution challenges. In this study, we analyzed the air pollution characteristics and their relationship with emissions and meteorology in the YRD region during 2014-2016. In recent years, the concentrations of all air pollutants, except O3, decreased. Spatially, the PM2.5, PM10, SO2, and CO concentrations were higher in the northern YRD region, and NO2 and O3 were higher in the central YRD region. Based on the number of non-attainment days (i.e., days with air quality index greater than 100), PM2.5 was the largest contributor to air pollution in the YRD region, followed by O3, PM10, and NO2. However, particulate matter pollution has declined gradually, while O3 pollution worsened. Meteorological conditions mainly influenced day-to-day variations in pollutant concentrations. PM2.5 concentration was inversely related to wind speed, while O3 concentration was positively correlated with temperature and negatively correlated with relative humidity. The air quality improvement in recent years was mainly attributed to emission reductions. During 2014-2016, PM2.5, PM10, SO2, NOx, CO, NH3, and volatile organic compound (VOC) emissions in the YRD region were reduced by 26.3%, 29.2%, 32.4%, 8.1%, 15.9%, 4.5%, and 0.3%, respectively. Regional transport also contributed to the air pollution. During regional haze periods, pollutants from North China and East China aggravated the pollution in the YRD region. Our findings suggest that emission reduction and regional joint prevention and control helped to improve the air quality in the YRD region.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Conceitos Meteorológicos , China , Meteorologia , Ozônio , Material Particulado/análise , Rios , Estações do Ano , Temperatura , Urbanização
4.
Atmos Environ (1994) ; 208: 133-140, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186616

RESUMO

Sulfate plays an important role in atmospheric haze in China, which has received considerable attention in recent years. Various types of parameterization methods and heterogeneous oxidation rates of SO2 have been used in previous studies. However, properly representing heterogeneous sulfate formation in air quality models remains a big challenge. In this study, we quantified the heterogeneous oxidation reaction using experimental results that approximate the haze conditions in China. Firstly, a series of experiments were conducted to investigate the heterogeneous uptake of SO2 with different relative humidity (RH) levels and the presence of NH3 and NO2 on natural dust surfaces. Then the uptake coefficients for heterogeneous oxidation of SO2 to sulfate at different RH under NH3 and NO2coexistence were parameterized based on the experimental results and implemented in the Community Multiscale Air Quality modeling system (CMAQ). Simulation results suggested that this new parameterization improved model performance by 6.6% in the simulation of wintertime sulfate concentrations for Beijing. The simulated maximum growth rate of SO4 2- during a heavy pollution period increased from 0.97 µg m-3 h-1 to 10.11 µg m-3 h-1. The heterogeneous oxidation of SO2 in the presence of NH3 contributed up to 23% of the sulfate concentration during heavy pollution periods.

5.
Environ Pollut ; 250: 914-921, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31085478

RESUMO

China has been faced with severe haze pollution, which is hazardous to human health. Among the air pollutants, PM2.5 (particles with an aerodynamic diameter ≤ 2.5 µm) is the most dangerous because of its toxicity and impact on human health and ecosystems. However, there has been limited research on PM2.5 particle toxicity. In the present study, we collected daily PM2.5 samples from January 1 to March 31, 2018 and selected samples to extract water-soluble species, including SO42-, NO3-, WSOC, and NH4+. These samples represented clean, good, slight, moderate, and heavy pollution days. After extraction using an ultrasonic method, PM2.5 solutions were obtained. We used Chlorella as the test algae and studied the content of chlorophyll a, as well as the variation in fluorescence when they were placed into the PM2.5 extraction solution, and their submicroscopic structure was analyzed using transmission electron microscopy (TEM). The results showed that when the air quality was relatively clean and good (PM2.5 concentration ≤ 75 µg m-3), the PM2.5 extraction solutions had no inhibiting effects on Chlorella, whereas when the air quality was polluted (PM2.5 concentration > 75 µg m-3) and heavily polluted (PM2.5 concentration > 150 µg m-3), with increasing PM2.5 concentrations and exposure time, the chlorophyll a content in Chlorella decreased. Moreover, the maximum photochemical quantum yield (Fv/Fm) of Chlorella obviously decreased, indicating chlorophyll inhibition during polluted days with increasing PM2.5 concentrations. The effects on the chlorophyll fluorescence parameters were also obvious, leading to an increase of energy dissipated per unit reaction center (DIo/RC), suggesting that Chlorella could survive when exposed to PM2.5 solutions, whereas the physiological activities were significantly inhibited. The TEM analysis showed that there were few effects on Chlorella cell microstructure during clean days, whereas plasmolysis occurred during light- and medium-polluted days. With increasing pollution levels, plasmolysis became more and more apparent, until the organelles inside the cells were thoroughly destroyed and most of the parts could not be recognized.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Chlorella/efeitos dos fármacos , Monitoramento Ambiental/métodos , Material Particulado/toxicidade , Poluentes Atmosféricos/análise , China , Chlorella/metabolismo , Clorofila A/metabolismo , Humanos , Tamanho da Partícula , Material Particulado/análise , Solubilidade , Testes de Toxicidade , Água/química
6.
Environ Pollut ; 244: 84-92, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30326389

RESUMO

Organic aerosol (OA) are always the most abundant species in terms of relative proportion to PM2.5 concentration in Beijing, while in previous studies, poor link between carbonaceous particles and their gaseous precursors were established based on field observation results. Through this study, we provided a comprehensive analysis of critical carbonaceous species in the atmosphere. The concentrations, diurnal variations, conversions, and gas-particle partitioning (F-factor) of 8 carbonaceous species, carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs), non-methane hydrocarbon (NMHC), organic carbon (OC), elemental carbon (EC), and water soluble organic compounds (WSOCs), in Beijing were analyzed synthetically. Carbonaceous gases (CO, CO2, VOCs, and CH4) and OC/EC ratios exhibited double-peak diurnal patterns with a pronounced midnight peak, especially in winter. High correlation between VOCs and OC during winter nighttime indicated that OC was formed from VOCs precursors via an unknown mechanism at relative humidity greater than 50% and 80%, thereby promoting WSOC formation in PM1 and PM2.5 respectively. The established F-factor method was effective to describe gas-to-particle transformation of carbonaceous species and was a good indicator for haze events since high F-factors corresponded with enhanced PM2.5 level. Moreover, higher F-factors in winter indicated carbonaceous species were more likely to exist as particles in Beijing. These results can help gain a comprehensive understanding of carbon cycle and formation of secondary organic aerosols from gaseous precursors in the atmosphere.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Umidade , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Poluição do Ar , Atmosfera/análise , Pequim , Ciclo do Carbono , Dióxido de Carbono/análise , Monóxido de Carbono/análise , China , Metano/análise , Tamanho da Partícula , Compostos Orgânicos Voláteis/análise , Água/análise
7.
J Environ Sci (China) ; 75: 388-395, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473304

RESUMO

Fine particles associated with haze pollution threaten the health of more than 400 million people in China. It is therefore of great importance to thoroughly investigate and understand their composition. To determine the physicochemical properties in atmospheric fine particles at the micrometer level, we described a sensitive and feasible surface-enhanced Raman scattering (SERS) method using Ag foil as a substrate. This novel method enhanced the Raman signal intensities up to 10,000 a.u. for ν(NO3-) in fine particles. The SERS effect of Ag foil was further studied experimentally and theoretically and found to have an enhancement factor of the order of ~104. Size-fractionated real particle samples with aerodynamic diameters of 0.4-2.5 µm were successfully collected on a heavy haze day, allowing ready observation of morphology and identification of chemical components, such as soot, nitrates, and sulfates. These results suggest that the Ag-foil-based SERS technique can be effectively used to determine the microscopic characteristics of individual fine particles, which will help to understand haze formation mechanisms and formulate governance policies.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Poluentes Atmosféricos/química , Poluição do Ar/estatística & dados numéricos , China , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Análise Espectral Raman
8.
Sci Total Environ ; 647: 204-209, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077849

RESUMO

Obtaining detailed information on sulfate-nitrate-ammonium (SNA) is fundamentally important to explain the formation of haze in China, since it is a dominant component of fine particulate matter (PM2.5) and plays a critical role in the deterioration of air quality. Several single-particle analysis methods have been applied to study and explain SNA formation; however, determining its mixture state remains a challenge. This study describes a direct observation of the SNA components in atmospheric particles on a single-particle scale, and details the first use of a non-destructive surface-enhanced Raman scattering (SERS) technique for SNA analysis. We studied PM2.5 collected at a site on the premises of Tsinghua University in Beijing, China, during a winter haze episode (12.15.2016-12.23.2016). The on-line data show that the SNA component accounted for 9.4% to 68.2% of the total mass of PM2.5, becoming dominant on heavy haze days, and the sulfate concentration increased with the nitrate concentration (R2 = 0.72). Furthermore, the off-line SERS and scanning electron microscopy-energy dispersive X ray analysis (SEM-EDS) results for the single particles collected also indicated that SNA increase with increasing haze pollution. The existing state of the SNA component on each haze day was observed directly in a non-destructive manner mainly in the form of double salts such as 3(NH4NO3)·(NH4)2SO4 and 2(NH4NO3)·(NH4)2SO4. A Raman mapping experiment further confirmed that the SNA was internally mixed. Our data also show that SNA can evaporate under high-vacuum scanning electron microscopy conditions, suggesting that SERS is an effective method to directly observe SNA without sample loss and may represent a promising single-particle technique to supplement traditional electron microscopy methods. This work will provide evidence for the SNA formation, particularly during haze events.

9.
Environ Pollut ; 242(Pt A): 544-554, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30007265

RESUMO

Continuous haze monitoring was conducted from 12:00 3 April to 12:00 8 April 2016 in Beijing, China to develop a more detailed understanding of spring haze characteristics. The PM2.5 concentration ranged from 6.30 to 165 µg m-3 with an average of 63.8 µg m-3. Nitrate was the most abundant species, accounting for 36.4% of PM2.5, followed by organic carbon (21.5%), NH4+ (19.3%), SO42- (18.8%), and elemental carbon (4.10%), indicating the key role of nitrate in this haze event. Species contribution varied based on the phase of the haze event. For example, sulfate concentration was high during the haze formation phase, nitrate was high during the haze, and secondary organic carbon (SOC) had the highest contribution during the scavenging phase. The secondary transition of sulfate was influenced by SO2, followed by relative humidity (RH) and Ox (O3+NO2). Nitrate formation occurred in two stages: through NO2 oxidation, which was vulnerable to Ox; and by the partitioning of N (+5) which was susceptible to RH and temperature. SOC tended to form when Ox and RH were balanced. According to hourly species behavior, sulfate and nitrate were enriched during haze formation when the mixed layer height decreased. However, SOC accumulated prior to the haze event and during formation, which demonstrated the strong contribution of secondary inorganic aerosols, and the limiting contribution of SOC to this haze case. Investigating backward trajectories showed that high speed northwestern air masses following a straight path corresponded to the clear periods, while southwesterly air masses which traversed heavily polluted regions brought abundant pollutants to Beijing and stimulated the occurrence of haze pollution. Results indicate that the control of NO2 needs to be addressed to reduce spring haze. Finally, the correlation between air mass trajectories and pollution conditions in Beijing reinforce the necessity of inter-regional cooperation and control.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Pequim , Carbono , China , Nitratos/análise , Estações do Ano , Sulfatos/análise , Transportes
10.
Environ Pollut ; 229: 339-349, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28609735

RESUMO

Heavy haze pollution occurs frequently in northern China, most critically in the Beijing-Tianjin-Hebei area (BTH). Zibo, an industrial city located in Shandong province, is often listed as one of the top ten most polluted cities in China, particularly in winter. However, no studies of haze in Zibo have been conducted, which limits the understanding of the source and formation of haze pollution in this area, as well as mutual effects with the BTH area. We carried out online and continuous integrated field observation of particulate matter in winter, from 11 to 25 January 2015. SO42-, NO3-, and NH4+ (SIA) and organics were the main constituents of PM2.5, contributing 59.4% and 33.6%, respectively. With the increasing severity of pollution, the contribution of SIA increased while that of organics decreased. Meteorological conditions play an important role in haze formation; high relative humidity (RH) and low wind speed increased both the accumulation of pollutants and the secondary transition from gas precursors (gas-particle phase partitioning). Since RH and the presence of O3 can indicate heterogeneous and photochemistry processes, respectively, we carried out correlation analysis and linear regression to identify their relative importance to the three main secondary species (sulfate, nitrate, and secondary organic carbon (SOC)). We found that the impact of RH is in the order of SO42- > NO3- > SOC, while the impact of O3 is reversed, in the order of SOC > NO3- > SO42-, indicating different effect of these factors on the secondary formation of main species in winter. Cluster analysis of backward trajectories showed that, during the observation period, six directional sources of air masses were identified, and more than 90% came from highly industrialized areas, indicating that regional transport from industrialized areas aggravates the haze pollution in Zibo. Inter-regional joint prevention and control is necessary to prevent further deterioration of the air quality.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Poluição do Ar/análise , Pequim , China , Cidades , Poluição Ambiental , Umidade , Meteorologia , Nitratos/análise , Estações do Ano , Sulfatos/análise , Vento
11.
Environ Pollut ; 227: 296-305, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28477554

RESUMO

Four haze episodes (EPs) were observed in October 2014 in Beijing, China. For better understanding of the characteristics and the formation mechanisms of PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm), especially secondary water-soluble inorganic species in these haze events, hourly concentrations of PM2.5, sulfate, nitrate, and ammonium (SNA) were measured in this study. Concentrations of gaseous pollutants and meteorological parameters were also measured. The average concentration of PM2.5 was 106.6 ± 83.5 µg m-3, which accounted for around 53% of PM10 (particulate matter with an aerodynamic diameter ≤ 10 µm) mass. Nitrogen dioxide (NO2) concentration was much higher than that of sulfur dioxide (SO2) since October is a non-heating month. SNA is the most abundant secondary water-soluble inorganic species and contributed to 33% of PM2.5 mass concentration. Sulfur oxidation ratio (SOR) was much higher than nitrogen oxidation ratio (NOR). NOR and SOR increased with elevated PM2.5 levels and heterogeneous processes seemed to be the most plausible explanation of this increase. Relative humidity (RH), which is of great influence on aerosol liquid water content (ALWC), played a considerable role in the formation of secondary inorganic aerosols, accelerated the secondary transformation of gaseous precursors, and further aggravated haze pollution. The positive feedback loop associated with high aerosol levels and low planetary boundary layer (PBL) height led to the evolution and exacerbation of heavy haze pollution. Fire maps and 48-h air mass backward trajectories supported the significant impact of biomass burning activities and regional transport on haze formation over Beijing in October 2014.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Pequim , China , Meteorologia , Nitratos/análise , Dióxido de Nitrogênio , Estações do Ano , Solubilidade , Sulfatos/análise , Dióxido de Enxofre , Água
12.
Environ Sci Technol ; 50(9): 4632-41, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050081

RESUMO

Haze episodes occurred in Beijing repeatedly in 2013, resulting in 189 polluted days. These episodes differed in terms of sources, formation processes, and chemical composition and thus required different control policies. Therefore, an overview of the similarities and differences among these episodes is needed. For this purpose, we conducted one-year online observations and developed a program that can simultaneously divide haze episodes and identify their shapes. A total of 73 episodes were identified, and their shapes were linked with synoptic conditions. Pure-haze events dominated in wintertime, whereas mixed haze-dust (PM2.5/PM10 < 60%) and mixed haze-fog (Aerosol Water/PM2.5 ∼ 0.3) events dominated in spring and summer-autumn, respectively. For all types, increase of ratio of PM2.5 in PM10 was typically achieved before PM2.5 reached ∼150 µg/m(3). In all PM2.5 species observed, organic matter (OM) was always the most abundant component (18-60%), but it was rarely the driving factor: its relative contribution usually decreased as the pollution level increased. The only OM-driven episode observed was associated with intensive biomass-burning activities. In comparison, haze evolution generally coincided with increasing sulfur and nitrogen oxidation ratios (SOR and NOR), indicating the enhanced production of secondary inorganic species. Applicability of these conclusions required further tests with simultaneously multisite observations.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis , Pequim , China
13.
Faraday Discuss ; 189: 317-35, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27123764

RESUMO

The strict control on emissions implemented in Beijing, China, during the 2015 China Victory Day Parade (V-day Parade) to commemorate the 70(th) Anniversary of Victory in World War II, provided a good opportunity to investigate the relationship between emission sources and aerosol chemistry in a heavily polluted megacity. From August 11 to September 3, 2015, an Aerosol Chemical Speciation Monitor was deployed in urban Beijing, together with other collocated instruments, for the real-time measurement of submicron aerosol characteristics. The average PM1 mass concentration was 11.3 (±6.7) µg m(-3) during the V-day Parade, 63.5% lower than that before the V-day Parade. Differently to the relatively smaller decrease of organics (53%), secondary inorganic aerosols (sulfate, nitrate and ammonium) showed significant reductions of 65-78% during the V-day Parade. According to the positive matrix factorization results, primary organic aerosol (POA) from traffic and cooking emissions decreased by 41.5% during the parade, whereas secondary organic aerosol (SOA) presented a much greater reduction (59%). The net effectiveness of emission control measures was investigated further under comparable weather conditions before and during the parade. By excluding the effects of meteorological parameters, the total PM1 mass was reduced by 52-57% because of the emission controls. Although the mass concentrations of aerosol species were reduced substantially, the PM1 bulk composition was similar before and during the control period as a consequence of synergetic control of various precursors. The emission restrictions also suppressed the secondary formation processes of sulfate and nitrate, indicated by the substantially reduced SOR and NOR (molar ratios of sulfate or nitrate to the sums of the sulfate and SO2 or nitrate and NO2) during the event. The study also explored the influence of emission controls on the evolution of organic aerosol using the mass ratios of SOA/POA and oxygen-to-carbon ratios. The results showed that for northwesterly airflows, emission restrictions during the V-day Parade also reduced the oxidation degree of organic aerosol.

14.
Chemosphere ; 150: 365-377, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26921589

RESUMO

Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , Aerossóis , Ar/análise , Pequim , Butadienos/análise , Carboidratos/análise , Poeira/análise , Hemiterpenos/análise , Tamanho da Partícula , Pentanos/análise , Solo/química
15.
Toxicol Res (Camb) ; 5(3): 946-953, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090403

RESUMO

Exposure to PM2.5 has been strongly linked to endothelial dysfunction. However, the underlying mechanism of PM2.5 on the vascular endothelial function is poorly understood. This study examined the toxic effect and underlying mechanism of PM2.5 on human umbilical vein endothelial cells (HUVECs). Decreased cell viability and increased LDH activity were observed in the PM2.5-treated HUVECs in a dose-dependent manner. The production of ROS, MDA, and the inhibition of SOD activity were also triggered by PM2.5 in HUVECs. In addition, PM2.5 increased the intracellular levels of proinflammatory cytokines (IL-6, TNF-a, IL-1ß, IL-8 and CRP), cell adhesion molecules (ICAM-1, VCAM-1) and tissue factor (TF), resulted in endothelial activation. For an in-depth study, the protein levels of IL-6, JAK1 and STAT3 were up-regulated significantly, while the expression of JAK2 and SOCS1 were down-regulated gradually in PM2.5-treated HUVECs in a dose-dependent manner. These results show that PM2.5 triggered endothelial activation via upregulation of the IL-6 dependent JAK1/STAT3 signaling pathway. This will provide new insights into the toxic effects and mechanisms of cardiovascular diseases triggered by ambient air pollution.

16.
Environ Int ; 86: 150-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595670

RESUMO

Recently, PM2.5 (atmospheric fine particulate matter with aerodynamic diameter ≤ 2.5 µm) have received so much attention that the observations, source appointment and countermeasures of it have been widely studied due to its harmful impacts on visibility, mood (mental health), physical health, traffic safety, construction, economy and nature, as well as its complex interaction with climate. A review on the PM2.5 related research is necessary. We start with summary of chemical composition and characteristics of PM2.5 that contains both macro and micro observation results and analysis, wherein the temporal variability of concentrations of PM2.5 and major components in many recent reports is embraced. This is closely followed by an overview of source appointment, including the composition and sources of PM2.5 in different countries in the six inhabitable continents based on the best available results. Besides summarizing PM2.5 pollution countermeasures by policy, planning, technology and ideology, the World Air Day is proposed to be established to inspire and promote the crucial social action in energy-saving and emission-reduction. Some updated knowledge of the important topics (such as formation and evolution mechanisms of hazes, secondary aerosols, aerosol mass spectrometer, organic tracers, radiocarbon, emissions, solutions for air pollution problems, etc.) is also included in the present review by logically synthesizing the studies. In addition, the key research challenges and future directions are put forward. Despite our efforts, our understanding of the recent reported observations, source identifications and countermeasures of PM2.5 is limited, and subsequent efforts both of the authors and readers are needed.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis/análise , Microbiologia do Ar/normas , Poluentes Atmosféricos/química , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Clima , Humanos , Tamanho da Partícula , Material Particulado/química
17.
Hypertension ; 67(1): 77-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26573709

RESUMO

Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.


Assuntos
Poluição do Ar/efeitos adversos , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/fisiopatologia , Resistência à Insulina/fisiologia , Insulina/sangue , Poluentes Atmosféricos/efeitos adversos , Pequim/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Estudos Prospectivos
18.
PLoS One ; 10(9): e0138267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382838

RESUMO

Epidemiological studies have associated high levels of airborne particulate matter (PM) with increased respiratory diseases. In order to investigate the mechanisms of air pollution-induced lung toxicity in humans, human bronchial epithelial cells (16HBE) were exposed to various concentrations of particles smaller than 2.5 µm (PM2.5) collected from Beijing, China. After observing that PM2.5 decreased cell viability in a dose-dependent manner, we first used Illumina RNA-seq to identify genes and pathways that may contribute to PM2.5-induced toxicity to 16HBE cells. A total of 539 genes, 283 up-regulated and 256 down-regulated, were identified to be significantly differentially expressed after exposure to 25 µg/cm2 PM2.5. PM2.5 induced a large number of genes involved in responses to xenobtiotic stimuli, metabolic response, and inflammatory and immune response pathways such as MAPK signaling and cytokine-cytokine receptor interaction, which might contribute to PM2.5-related pulmonary diseases. We then confirmed our RNA-seq results by qPCR and by analysis of IL-6, CYP1A1, and IL-8 protein expression. Finally, ELISA assay demonstrated a significant association between exposure to PM2.5 and secretion of IL-6. This research provides a new insight into the mechanisms underlying PM2.5-induced respiratory diseases in Beijing.


Assuntos
Poluentes Atmosféricos/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Material Particulado/farmacologia , Transcriptoma/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Células Cultivadas , China , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Exposição por Inalação/análise , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
19.
Huan Jing Ke Xue ; 36(11): 3935-42, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26910976

RESUMO

Based on the newly established high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), the saccharides in PM2.5 and PM10 in Beijing from 2011 - 2012 were quantified. Fourteen saccharides were synchronously detected in the aerosols samples in Beijing, which can be divided into three categories, i. e. anhydrosugar, sugar and sugar alcohol. Anhydrosugar, coming from biomass burning, include levoglucosan, mannosan and galactosan. Sugar and sugar alcohol, emitted by the primary biogenic emission, include glucose, fructose, trehalose, arabitol, mannitol, glycerol, threitol, 2-meythltrtols (2-methylthreitol and 2-methylerythrito), xylitol and inositol. The concentrations of monosaccharide anhydrides in summer and autumn were obviously higher than those in spring and winter, while the concentrations of sugar and sugar alcohol in winter were significantly lower than those in other seasons. The results of positive matrix factorization analysis suggested that saccharides compounds in atmospheric PM in Beijing can be derived from biomass burning, suspended soil or dust, isoprene SOA, as well as direct release of airborne fungal spores and pollen.


Assuntos
Poluentes Atmosféricos/análise , Carboidratos/análise , Material Particulado/análise , Aerossóis , Pequim , Poeira , Monitoramento Ambiental , Galactose/análogos & derivados , Glucose/análogos & derivados , Manose/análogos & derivados , Estações do Ano , Álcoois Açúcares
20.
Environ Pollut ; 197: 68-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497308

RESUMO

Heavily-polluted PM2.5 (fine particulate matter) episodes frequently impacting Beijing, especially during winter, have become a substantial concern. We found that during winter, the daily variation of PM2.5 in Beijing tracked the pattern of relative humidity (RH). With the increase of PM2.5 (or RH), water-soluble components (especially inorganic ions) became more abundant, and the water-soluble organic carbon to organic carbon ratios increased. The nitrate to sulfate ratios also exhibited dependence on RH, and were higher than those measured about a decade ago, consistent with the increasing trend of nitrogen oxides emissions. Surprisingly, the ratios of water-insoluble organic carbon to elemental carbon showed significant increase at high RH levels, presumably indicating the formation of secondary organic aerosol that is not soluble in water. In addition, humid winters were occasionally identified during 1996-2013 which are expected to be favorable for the formation of air pollution episodes with high PM2.5 concentrations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Umidade , Material Particulado/análise , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Carbono/análise , China , Cidades , Íons/análise , Nitratos/análise , Tamanho da Partícula , Estações do Ano , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA