Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
iScience ; 23(3): 100919, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32114378

RESUMO

Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm-2 displays a specific capacity of 762 mAh g-1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm-2, ultra-high areal capacities of 7.30 mAh cm-2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.

2.
Nature ; 579(7799): 368-374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188941

RESUMO

Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest1-4. However, most vdWHs reported so far  are created by an arduous micromechanical exfoliation and manual restacking process5, which-although versatile for proof-of-concept demonstrations6-16 and fundamental studies17-30-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moiré superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.

3.
Nano Lett ; 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32155083

RESUMO

Lithium metal represents an ultimate anode material of lithium batteries for its high energy density. However, its large negative redox potential and reactive nature can trigger electrolyte decomposition and dendrite formation, causing unstable cycling and short circuit of batteries. Herein, we engineer a resilient solid electrolyte interphase on the Li anode by compositing the battery separator with organosulfur compounds and inorganic salts from garlic. These compounds take part in battery reactions to suppress dendrite growth through reversible electrochemistry and attenuate ionic concentration gradient. When the Li anode and the separator are paired with the LiFePO4 cathode, one obtains a battery delivering long-term cycling stability of 3000 cycles, a rate capacity of 100 mAh g-1 at 10 C (2.5 mA cm-2), a Coulombic efficiency of 99.9%, and a low battery polarization. Additionally, with high-loading 20 mg cm-2 LiFePO4 cathodes, an areal capacity of 3.4 mAh cm-2 is achieved at 0.3 C (1 mA cm-2).

4.
Nat Commun ; 11(1): 659, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005802

RESUMO

In atomically-thin two-dimensional (2D) semiconductors, the nonuniformity in current flow due to its edge states may alter and even dictate the charge transport properties of the entire device. However, the influence of the edge states on electrical transport in 2D materials has not been sufficiently explored to date. Here, we systematically quantify the edge state contribution to electrical transport in monolayer MoS2/WSe2 field-effect transistors, revealing that the charge transport at low temperature is dominated by the edge conduction with the nonlinear behavior. The metallic edge states are revealed by scanning probe microscopy, scanning Kelvin probe force microscopy and first-principle calculations. Further analyses demonstrate that the edge-state dominated nonlinear transport shows a universal power-law scaling relationship with both temperature and bias voltage, which can be well explained by the 1D Luttinger liquid theory. These findings demonstrate the Luttinger liquid behavior in 2D materials and offer important insights into designing 2D electronics.

5.
Nano Lett ; 20(2): 1410-1416, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31972081

RESUMO

van der Waals (vdW) integration offers a flexible strategy to nearly arbitrarily combine materials of radically different chemical compositions, crystal structures, or lattice orientations, enabling versatile heterostructures with unique electronic and photonic characteristics or other exotic properties that are difficult to access in traditional epitaxial heterostructures, as highlighted by a recent blossom in two-dimensional (2D) vdW heterostructures. However, the studies on vdW heterostructures currently have been largely limited to 2D materials, with few reports of vdW integration of traditional three-dimensional (3D) materials. Here, we show that the vdW integration approach could be extended to 3D materials for flexible integration of highly disparate materials. In particular, by assembling nanomembranes fabricated from bulk ß-gallium oxide, silicon, and platinum, we demosntrate a variety of functional devices including Schottky diodes, p-n diodes, metal-semiconductor field-effect transistors, and junction field-effect transistors. These devices exhibit excellent electronic performance, in terms of ideality factor, current on/off ratio, and subthreshold swing, laying the foundations for constructing high-performance heterostructure devices.

6.
Chem Soc Rev ; 48(20): 5207-5241, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31573024

RESUMO

Electrocatalysis plays an essential role in diverse electrochemical energy conversion processes that are vital for improving energy utilization efficiency and mitigating the aggravating global warming challenge. The noble metals such as platinum are generally the most frequently used electrocatalysts to drive these reactions and facilitate the relevant energy conversion processes. The high cost and scarcity of these materials pose a serious challenge for the wide-spread adoption and the sustainability of these technologies in the long run, which have motivated considerable efforts in searching for alternative electrocatalysts with reduced loading of precious metals or based entirely on earth-abundant metals. Of particular interest are graphene-supported single atom catalysts (G-SACs) that integrate the merits of heterogeneous catalysts and homogeneous catalysts, such as high activity, selectivity, stability, maximized atom utilization efficiency and easy separation from reactants/products. The graphene support features a large surface area, high conductivity and excellent (electro)-chemical stability, making it a highly attractive substrate for supporting single atom electrocatalysts for various electrochemical energy conversion processes. In this review, we highlight the recent advancements in G-SACs for electrochemical energy conversion, from the synthetic strategies and identification of the atomistic structure to electrocatalytic applications in a variety of reactions, and finally conclude with a brief prospect on future challenges and opportunities.

7.
Adv Mater ; 31(49): e1902962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31618496

RESUMO

The minimization of the subthreshold swing (SS) in transistors is essential for low-voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal-oxide-semiconductor field-effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec-1 at room temperature). However, another type of transistor, the junction field-effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2 van der Waals (vdW) heterostructure-based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2 vdW heterostructure exhibits excellent p-n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2 as the channel, the SnSe/MoS2 vdW heterostructure exhibit well-behavioured n-channel JFET characteristics with a small pinch-off voltage VP of -0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec-1 and high ON/OFF ratio over 106 , demonstrating excellent electronic performance especially in the subthreshold regime.

8.
iScience ; 19: 728-736, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31476619

RESUMO

Nanostructured alloy-type electrode materials and its composites have shown extraordinary promise for lithium-ion batteries (LIBs) with exceptional gravimetric capacity. However, studies to date are usually limited to laboratory cells with too low mass loading (and thus too low areal capacity) to exert significant practical impact. Herein, by impregnating micrometer-sized SnO2/graphene composites into 3D holey graphene frameworks (HGF), we show that a well-designed 3D-HGF/SnO2 composite anode with a high mass loading of 12 mg cm-2 can deliver an ultra-high areal capacity up to 14.5 mAh cm-2 under current density of 0.2 mA cm-2 and stable areal capacity of 9.5 mAh cm-2 under current density of 2.4 mA cm-2, considerably outperforming those in the state-of-art research devices or commercial devices. This robust realization of high areal capacity defines a critical step to capturing the full potential of high-capacity alloy-type electrode materials in practical LIBs.

9.
Nano Lett ; 19(10): 6819-6826, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498650

RESUMO

The electrochemical molecular intercalation of two-dimensional layered materials (2DLMs) produces stable and highly tunable superlattices between monolayer 2DLMs and self-assembled molecular layers. This process allows unprecedented flexibility in integrating highly distinct materials with atomic/molecular precision to produce a new generation of organic/inorganic superlattices with tunable chemical, electronic, and optical properties. To better understand the intercalation process, we developed an on-chip platform based on MoS2 model devices and used optical, electrochemical, and in situ electronic characterizations to resolve the intermediate stages during the intercalation process and monitor the evolution of the molecular superlattices. With sufficient charge injection, the organic cetyltrimethylammonium bromide (CTAB) intercalation induces the phase transition of MoS2 from semiconducting 2H phase to semimetallic 1T phase, resulting in a dramatic increase of electrical conductivity. Therefore, in situ monitoring the evolution of the device conductance reveals the electrochemical intercalation dynamics with an abrupt conductivity change, signifying the onset of the molecule intercalation. In contrast, the intercalation of tetraheptylammonium bromide (THAB), a branched molecule in a larger size, resulting in a much smaller number of charges injected to avoid the 2H to 1T phase transition. Our study demonstrates a powerful platform for in situ monitoring the molecular intercalation of many 2DLMs (MoS2, WSe2, ReS2, PdSe2, TiS2, and graphene) and systematically probing electronic, optical, and optoelectronic properties at the single-nanosheet level.

10.
Nanotechnology ; 31(1): 015402, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514178

RESUMO

Germanium (Ge) has gained a great deal of attention as an anode material for sodium ion batteries (SIBs) and lithium ion batteries (LIBs) for its high theoretical capacity and ion diffusivity. Unfortunately, Ge particle pulverization triggered by huge volume expansion during the alloying and dealloying processes can cause rapid capacity fade. Herein we report a facile method for the preparation of ultrafine Ge nanoparticles embedded in hierarchical N-doped multichannel carbon fibers (denoted as Ge-NMCFs) by electrospinning. The hierarchical carbon matrix not only provides sufficient internal void space to accommodate the large volume expansion of Ge nanoparticles, but also provides numerous open channels for the easy access of electrolyte and Na/Li ions. As half-cell tests revealed, the composite provides discharge capacity of 303 mA h g-1 (1st cycle) and 160 mA h g-1 (700th cycle) for SIBs, 1146.7 mA h g-1 (1st cycle) and 600 mA h g-1 (500th cycle) for LIBs at a current density of 500 mA g-1 (all the presented capacity based on the total weight of Ge/C composites). Density functional theory calculation suggests that N-doped in carbon can enhance the Na/Li ion storage and improve the electrochemical performance. This demonstration is an important step towards the development of SIBs and LIBs with much higher specific energy capacity and longer cycle stability.

11.
Nat Nanotechnol ; 14(10): 950-956, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31451758

RESUMO

Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells.

12.
Nano Lett ; 19(8): 5431-5436, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287958

RESUMO

Direct methanol/ethanol alkaline fuel cells (DMAFCs/DEAFCs) represent an attractive mobile power generation technology. The methanol/ethanol oxidation reaction (MOR/EOR) often requires high-performance yet expensive Pt-based catalysts that may be easily poisoned. Herein, we report the development of PtCuNi tetrahedra electrocatalysts with optimized specific activity and mass activity for MOR and EOR. Our synthetic and structural characterizations show that these PtCuNi tetrahedra have Cu-rich core and PtNi-rich shell with tunable surface composition. Electrocatalytic studies demonstrate that Pt56Cu28Ni16 exhibits exceptional MOR and EOR specific activities of 14.0 ± 1.0 mA/cm2 and 11.2 ± 1.0 mA/cm2, respectively and record high mass activity of 7.0 ± 0.5 A/mgPt and 5.6 ± 0.6 A/mgPt, comparing favorably with the best MOR or EOR Pt alloy-based catalysts reported to date. Furthermore, we show that the unique core-shell tetrahedra configuration can also lead to considerably improved durability.

13.
J Am Chem Soc ; 141(31): 12251-12257, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31361127

RESUMO

Silver nanowire (Ag-NW) thin films are of considerable interest for next-generation transparent conductors (TCs). However, their carrier transport properties are largely plagued by the residual polyvinylpyrrolidone (PVP) ligands on surface that were introduced during the synthesis of the Ag-NWs. Here we report a rapid electrochemical cleaning strategy to thoroughly remove the surface PVP ligands and greatly improve the carrier transport properties of the Ag-NW thin films while not affecting their transmittance. In particular, we show a negative electrochemical potential near the hydrogen adsorption/evolution regime can effectively displace all PVP ligands from the Ag-NW surface in 5-15 s, producing ultraclean interfaces between Ag-NW/Ag-NW junctions or Ag-NW film/active layer junction in a stacked optoelectronic device. We show that the removal of the PVP ligands can substantially reduce the sheet resistance of the Ag-NW thin film from 49 to 13 ohm/sq (with 90.91% transmittance at 550 nm) and reduce the interfacial resistance at the Ag-NW film/active layer interface by 94.3%. Such improved Ag-NW thin films can greatly enhance the sensitivity of the wearable strain sensor and the current collection efficiency of the vertically stacked devices constructed from the sandwiched thin films. These results demonstrate that the electrochemical cleaning approach is highly effective in removing surface ligands and improving both the in-plane and the out-of-plane carrier transport properties of the Ag-NW thin films, greatly facilitating their applications in electronic and optoelectronic devices.

14.
Chem Rev ; 119(15): 9074-9135, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31361471

RESUMO

Semiconductor nanowires have attracted extensive interest as one of the best-defined classes of nanoscale building blocks for the bottom-up assembly of functional electronic and optoelectronic devices over the past two decades. The article provides a comprehensive review of the continuing efforts in exploring semiconductor nanowires for the assembly of functional nanoscale electronics and macroelectronics. Specifically, we start with a brief overview of the synthetic control of various semiconductor nanowires and nanowire heterostructures with precisely controlled physical dimension, chemical composition, heterostructure interface, and electronic properties to define the material foundation for nanowire electronics. We then summarize a series of assembly strategies developed for creating well-ordered nanowire arrays with controlled spatial position, orientation, and density, which are essential for constructing increasingly complex electronic devices and circuits from synthetic semiconductor nanowires. Next, we review the fundamental electronic properties and various single nanowire transistor concepts. Combining the designable electronic properties and controllable assembly approaches, we then discuss a series of nanoscale devices and integrated circuits assembled from nanowire building blocks, as well as a unique design of solution-processable nanowire thin-film transistors for high-performance large-area flexible electronics. Last, we conclude with a brief perspective on the standing challenges and future opportunities.

15.
Adv Mater ; 31(33): e1900608, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31183914

RESUMO

Energy devices such as rechargeable batteries, fuel cells, and solar cells are central to powering a renewable, mobile, and electrified future. To advance these devices requires a fundamental understanding of the complex chemical reactions, material transformations, and charge flow that are associated with energy conversion processes. Analytical in situ transmission electron microscopy (TEM) offers a powerful tool for directly visualizing these complex processes at the atomic scale in real time and in operando. Recent advancements in energy materials and devices that have been enabled by in situ TEM are reviewed. First, the evolutionary development of TEM nanocells from the open-cell configuration to the closed-cell, and finally the full-cell, is reviewed. Next, in situ TEM studies of rechargeable ion batteries in a practical operation environment are explored, followed by applications of in situ TEM for direct observation of electrocatalyst formation, evolution, and degradation in proton-exchange membrane fuel cells, and fundamental investigations of new energy materials such as perovskites for solar cells. Finally, recent advances in the use of environmental TEM and cryogenic electron microscopy in probing clean-energy materials are presented and emerging opportunities and challenges in in situ TEM research of energy materials and devices are discussed.

16.
Science ; 364(6445): 1057-1062, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197007

RESUMO

Nanoporous two-dimensional materials are attractive for ionic and molecular nanofiltration but limited by insufficient mechanical strength over large areas. We report a large-area graphene-nanomesh/single-walled carbon nanotube (GNM/SWNT) hybrid membrane with excellent mechanical strength while fully capturing the merit of atomically thin membranes. The monolayer GNM features high-density, subnanometer pores for efficient transport of water molecules while blocking solute ions or molecules to enable size-selective separation. The SWNT network physically separates the GNM into microsized islands and acts as the microscopic framework to support the GNM, thus ensuring the structural integrity of the atomically thin GNM. The resulting GNM/SWNT membranes show high water permeance and a high rejection ratio for salt ions or organic molecules, and they retain stable separation performance in tubular modules.

17.
Nano Lett ; 19(7): 4384-4390, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150263

RESUMO

Lithium sulfur (Li-S) batteries are attracting increasing interest for high-density energy storage. However, the practical application is limited by the rapid capacity fading over repeated charge/discharge cycles which is largely attributed to the formation and shuttling of soluble polysulfide species. To address these issues, we develop a hierarchical structure composite with triple protection strategy via graphene, organic conductor PEDOT, and nitrogen and phosphorus codoped biological carbon to encapsulate sulfur species (GOC@NPBCS). This unique hierarchical structure can effectively immobilize the sulfur species while at the same time improve the electrical conductivity and ensure efficient lithium ion transport to enable excellent Li-S battery performance. In particular, the biological carbon derived from natural bacteria features inherent nitrogen and phosphorus codoping with a strong absorption to lithium polysulfides, which can greatly suppress the dissolution and shuttling of polysulfides that are responsible for rapid capacity fading. With these synergistic effects, the GOC@NPBCS cathode exhibits exceptionally stable cycling stability (an ultralow capacity fading rate of 0.045% per cycle during 1000 cycles at the current rate of 5 C), high specific capacity (1193.8 mAh g-1 at 0.5 C based on sulfur weight), and excellent rate capability.

18.
Adv Mater ; 31(25): e1900901, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31045286

RESUMO

Multiple structural phases in transition metal dichalcogenides have attracted considerable recent interest for their tunable chemical and electronic properties. Herein, a chemical vapor deposition route to ultrathin CoSe nanoplates with tunable structure phases is reported. By precisely tailoring the growth temperature, ultrathin 2D layered tetragonal CoSe nanoplates and nonlayered hexagonal CoSe nanoplates can be selectively prepared as square or hexagonal geometries, with thickness as thin as 2.3 and 3.7 nm, respectively. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction studies show that both types of nanoplates are high-quality single crystals. Electrical transport studies reveal that both the tetragonal and hexagonal CoSe nanoplates show strong thickness-tunable electrical properties and excellent breakdown current density. The 2D hexagonal CoSe nanoplates display metallic behavior with an excellent conductivity up to 6.6 × 105 S m-1 and an extraordinary breakdown current density up to 3.9 × 107 A cm-2 , while the square tetragonal nanoplates show considerably lower conductivity up to 8.2 × 104 S m-1 with angle-dependent magnetoresistance and weak antilocalization effect at lower field. This study offers a tunable material system for exploring multiphase 2D materials and their potential applications for electronic and magnetoelectronic devices.

19.
Adv Mater ; 31(27): e1901351, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31095803

RESUMO

The rational control of the nucleation and growth kinetics to enable the growth of 2D vertical heterostructure remains a great challenge. Here, an in-depth study is provided toward understanding the growth mechanism of transition metal dichalcogenides (TMDCs) vertical heterostructures in terms of the nucleation and kinetics, where active clusters with a high diffusion barrier will induce the nucleation on top of the TMDC templates to realize vertical heterostructures. Based on this mechanism, in the experiment, through rational control of the metal/chalcogenide ratio in the vapor precursors, effective manipulation of the diffusion barrier of the active clusters and precise control of the heteroepitaxy direction are realized. In this way, a family of vertical TMDCs heterostructures is successfully designed. Optical studies and scanning transmission electron microscopy investigations exhibit that the resulting heterostructures possess atomic sharp interfaces without apparent alloying and defects. This study provides a deep understanding regarding the growth mechanism in terms of the nucleation and kinetics and the robust growth of 2D vertical heterostructures, defining a versatile material platform for fundamental studies and potential device applications.

20.
Nature ; 567(7748): 323-333, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894723

RESUMO

Material integration strategies, such as epitaxial growth, usually involve strong chemical bonds and are typically limited to materials with strict structure matching and processing compatibility. Van der Waals integration, in which pre-fabricated building blocks are physically assembled together through weak van der Waals interactions, offers an alternative bond-free integration strategy without lattice and processing limitations, as exemplified by two-dimensional van der Waals heterostructures. Here we review the development, challenges and opportunities of this emerging approach, generalizing it for flexible integration of diverse material systems beyond two dimensions, and discuss its potential for creating artificial heterostructures or superlattices beyond the reach of existing materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA