Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 337: 127753, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777566

RESUMO

The effects of treatment with melatonin on ripening of 'Fuji' apples during storage at 1 °C for 56 d were investigated. The apples were harvested at the commercial ripening stage and treated with 1 mmol L-1 melatonin. Compared with the control, melatonin treated apples had significant reduced ethylene production (28 d-56 d) and weight loss (14 d-56 d) during storage (p < 0.05). Also, the melatonin treatment maintained better apple skin structure throughout storage. The reduced ethylene production was regulated by the decreased expressions of MdACO1, MdACS1, MdAP2.4 and MdERF109, based on RNA-Seq analysis, which was validated using qRT-PCR analysis. Moreover, the activity of 3 enzymes, including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), were significantly increased in melatonin treated fruit (p < 0.05). Taken together, this study highlights the inhibitory effects of melatonin in ethylene biosynthesis and factors influencing postharvest quality in apple.

2.
Food Chem ; 338: 128005, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32977138

RESUMO

Peach (Prunus persica L.) fruit are highly susceptible to chilling injury during cold storage, resulting in internal flesh browning and a failure to soften normally. We have examined the effect of a postharvest treatment consisting of a brief (30 s) dip in the natural plant hormone jasmonic acid, prior to storage at 4 °C. Jasmonic acid treatment reduced the severity of internal flesh browning and did not inhibit fruit softening over a 35 d storage period. Two major physiological effects of jasmonic acid on the fruit were observed, an increase in ethylene production and a prevention of the decline in soluble sugar content seen in controls. An increased soluble sugar content may have multiple benefits in resisting chilling stress, scavenging reactive oxygen species and acting to stabilize membranes. Our results show that a treatment with jasmonic acid can enhance chilling tolerance of peach fruit by regulating ethylene and sugar metabolism.

3.
Food Chem ; 324: 126903, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32361095

RESUMO

Cuticular wax chemicals differ among fruit cultivars and contribute to storage ability. However, wax analysis in apple cultivars, particularly during storage, has not been described. In this work, the chemicals and crystal structures of cuticular wax in 10 apple cultivars were analyzed to observe wax functions in apple during storage. Results showed that alkanes and primary alcohols decreased while fatty acids increased in stored fruits of all cultivars compared with the fruits before storage. Terpenoids, aldehydes, and phenols were observed in stored fruits but not in the fruits before storage in all cultivars except 'Red Star' fruit. The weight loss rate was significantly correlated with six components including C13 alcohol, C14 alkanes, total alkanes, total wax, C13 alkanes and C54 alkanes in 10 cultivar apple fruits during storage. Our findings indicate that the total wax, particularly alkanes, in the peel of apple fruits is essential for storage and quality control.


Assuntos
Armazenamento de Alimentos/métodos , Malus/química , Ceras/química , Álcoois/metabolismo , Aldeídos/análise , Alcanos/metabolismo , Ácidos Graxos/metabolismo , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Malus/metabolismo , Fenóis/análise , Terpenos/análise , Ceras/análise
4.
J Agric Food Chem ; 67(30): 8312-8318, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31287303

RESUMO

The role of inositol 1,4,5-trisphosphate (IP3) in nitric oxide (NO)-reduced chilling injury (CI) in peach fruit was investigated. The fruit were immersed in sodium nitroprusside (SNP) (NO donor) and neomycin (IP3 inhibitor). Results showed that chilling tolerance was enhanced upon exogenous SNP in postharvest peach fruit. Further, GABA accumulation was stimulated by SNP. The increase in protein expression and activity for enzymes in GABA biosynthesis, including glutamate decarboxylase (GAD), polyamine oxidase (PAO), and amino aldehyde dehydrogenase (AMADH), upon SNP treatment was also observed. Also, the up-regulation of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine d-aminotransferase (OAT) and the down-regulation of proline dehydrogenase (PDH) were induced by SNP treatment, thereby accelating proline production. Additionally, SNP treatment elevated protein expression and activity of alternative oxidase (AOX). The above effects induced upon SNP were partly weakened by neomycin. Therefore, IP3 mediated NO-activated GABA and proline accumulation as well as AOX, thus inducing chilling tolerance in postharvest peach fruit.


Assuntos
Frutas/química , Inositol 1,4,5-Trifosfato/metabolismo , Óxido Nítrico/metabolismo , Prunus persica/metabolismo , Aldeído Desidrogenase/metabolismo , Temperatura Baixa , Armazenamento de Alimentos , Frutas/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Prunus persica/química , Prunus persica/enzimologia , Ácido gama-Aminobutírico/metabolismo
5.
Food Chem ; 297: 124991, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253316

RESUMO

Plant species differ greatly in their ability to acclimatise to and survive, cold stress. Normally, potato tubers are stored at low temperatures (below 10 °C) to delay sprouting. In this research, combined transcriptomic and proteomic analysis was conducted on potato tubers stored at 15 °C, 4 °C and 0 °C to investigate the mechanism of cold responses during postharvest storage. Results showed that soluble sugars were accumulated under low temperatures, regulating by granule-bound starch synthase 1, beta-amylase, invertase inhibitor and fructokinase. In addition, fifteen heat shock proteins (Hsps), including three Hsp70s, two Hsp80s, one Hsp90, one Hsp100 and eight small Hsps, were induced by low temperatures, which may act individually or synergistically to prevent physiological or cellular damage from cold stress in postharvest potato tubers. This research provided general information of sugar accumulation and defense response in potato tuber under cold storage.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Transcriptoma , Temperatura Baixa , Armazenamento de Alimentos , Tubérculos/genética , Tubérculos/metabolismo , Proteômica , Solanum tuberosum/genética , Sintase do Amido/metabolismo , beta-Amilase/metabolismo
6.
PLoS One ; 14(4): e0215472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990828

RESUMO

Early ripening apples are usually used for fresh marketing because of short storage life, although they are with high acid and low sugar contents. Understanding the malate metabolism in fleshy fruit and underpinning process during ripening is crucial for particular crop improvement where acidity is a concern for direct consumption or further processing. In this research, a traditional Chinese apple cultivar 'Hongyu', which belongs to early ripening apple cultivar, were freshly harvested at commercial maturity stage (120 Days after full bloom) and used for different storage temperature (4°C, 20°C) and UV-C treatment (following storage at 20°C after treatment). Simple sugars (glucose, sucrose, and fructose) and organic acids (malic, and oxalic) were assessed after 14 d of storage. Compared to fruits stored at 20°C, the malate content in fruits stored at 4°C significantly higher, while it was decreased significantly in UV-C treated fruits stored at 20°C after 14 d of storage. The sugar content was almost similar throughout the UV-C-treated fruits and fruits stored at different temperature. The higher ratios of total sugars to total organic acids in UV-C treated fruits after 14 d suggest that UV-C treatment has the potential to improve the taste of early ripening apple cultivars. Considering the significant difference in malate the samples at 14 d of storage were subjected for RNA-seq analysis. Transcriptome analysis revealed that the phenomena underlying this change were governed by metabolism of malate by the regulation of NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxylase kinase (PEPCK) in apple during postharvest storage. This transcriptome profiling results have specified the transcript regulation of malate metabolism and lead to possible taste improvement without affecting the other fruit quality attributes.


Assuntos
Armazenamento de Alimentos , Frutas/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Malato Desidrogenase/biossíntese , Malatos/metabolismo , Malus/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese , Raios Ultravioleta , Perfilação da Expressão Gênica
7.
J Agric Food Chem ; 67(17): 4764-4773, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966738

RESUMO

The function of inositol 1,4,5-trisphosphate (IP3) on nitric oxide (NO)-induced chilling tolerance and defense response in postharvest peach fruit was explored. The postharvest fruit were treated with sodium nitroprusside (SNP, exogenous NO donor), cPTIO (NO scavenger), and neomycin (IP3 inhibitor). It turned out that SNP treatment mitigated chilling injury (CI) and stimulated NO accumulation in postharvest peach fruit. Further, SNP enhanced phosphoinositide-specific phospholipase C (PI-PLC) activity and, thereby, stimulated IP3 prodution. SNP also upregulated the activity and expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione S-transferase (GST), and glutathione reductase (GR). In addition, SNP enhanced the expression of small ubiquitin-like modifier (SUMO) and methionine sulfoxide reductase (MSR) and weakened the activity and expression of lipoxygenase (LOX) and phospholipase D (PLD). These above impacts stimulated by SNP treatment were blocked by the addition of cPTIO and neomycin. Overall, IP3 was involved in NO-enhanced chilling tolerance and defense response in postharvest peach fruit.


Assuntos
Inositol 1,4,5-Trifosfato/metabolismo , Óxido Nítrico/metabolismo , Prunus persica/fisiologia , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Temperatura Baixa , Resposta ao Choque Frio , Conservação de Alimentos , Conservantes de Alimentos/farmacologia , Frutas/química , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/fisiologia , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Nitroprussiato/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/química , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
Molecules ; 23(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487439

RESUMO

Potato tubers (Solanum tuberosum L.) are usually stored at low temperature, which can suppress sprouting and control the occurrence of diseases. However, low temperatures lead potatoes to easily suffer from cold-induced sweetening (CIS), which has a negative effect on food processing. The aim of this research was to investigate potential treatments on controlling CIS in potatoes during postharvest storage. "Atlantic" potatoes were treated with gibberellin and (S)-carvone, respectively, and stored at 4 °C for 90 days. The results showed that gibberellin can significantly accelerate sprouting and sugar accumulation by regulating expressions of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), ß-amylase (BAM1/2), UDP-glucose pyrophosphorylase (UGPase) and invertase inhibitor (INH1/2) genes. The opposite effects were found in the (S)-carvone treatment group, where CIS was inhibited by modulation of the expressions of GBSS and INH1/2 genes. In summary, gibberellin treatment can promote sugar accumulation while (S)-carvone treatment has some effects on alleviating sugar accumulation. Thus, (S)-carvone can be considered as a potential inhibitor of some of the sugars which are vital in controlling CIS in potatoes. However, the chemical concentration, treatment time, and also the treatment method needs to be optimized before industrial application.


Assuntos
Conservação de Alimentos , Giberelinas/farmacologia , Monoterpenos/farmacologia , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Temperatura Baixa , Monoterpenos Cicloexânicos , Proteínas de Plantas/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA