Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(11): 4445-4451, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580301

RESUMO

Periodically driven open quantum systems that never thermalize exhibit a discrete time-crystal behavior, a nonequilibrium quantum phenomenon that has shown promise in quantum information processing applications. Measurements of time-crystallinity are currently limited to (magneto-) optical experiments in atom-cavity systems and spin-systems making it an indirect measurement. We theoretically show that time-crystallinity can be measured directly in the charge-current from a spin-less Hubbard ladder, which can be simulated on a quantum-dot array. We demonstrate that one can dynamically tune the system out and then back on a time-crystal phase, proving its robustness against external forcings. These findings motivate further theoretical and experimental efforts to simulate the time-crystal phenomena in current-carrying nanoscale systems.

2.
ACS Nano ; 16(3): 4972, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35235301
3.
Nanoscale ; 14(13): 5022-5032, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35289817

RESUMO

Understanding the intricate relationship between illumination and temperature in metallic nano-particles is crucial for elucidating the role of illumination in various physical processes which rely on plasmonic enhancement but are also sensitive to temperature. Recent studies have shown that the temperature rise in optically thick ensembles of metal nanoparticles under intense illumination is dominated by the thermal conductivity of the host, rather than by the optical properties of the metal or the host. Here, we show that the temperature dependence of the thermal conductivity of the host dominates the nonlinear photothermal response of these systems. In particular, this dependence typically causes the temperature rise to become strongly sublinear, reaching even several tens of percent. We then show that this effect can explain experimental observations in several recent plasmon-assisted photocatalysis experiments. Under certain conditions, we show that thermal emission may also contribute to photothermal nonlinearity. This shows that any claim for the dominance of non-thermal electrons in plasmon-assisted photocatalysis must account first for this photothermal nonlinear mechanism.

4.
Nano Lett ; 22(5): 2127-2133, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075905

RESUMO

The search for the signature of nonthermal (so-called "hot") electrons in illuminated plasmonic nanostructures requires detailed understanding of the nonequilibrium electron distribution under illumination, as well as a careful design of the experimental system employed to distinguish nonthermal electrons from thermal ones. Here, we provide a theory for using plasmonic molecular junctions to achieve this goal. We show how nonthermal electrons can be measured directly and separately from the unavoidable thermal response and discuss the relevance of our theory to recent experiments.


Assuntos
Elétrons , Nanoestruturas , Nanoestruturas/química
5.
J Am Chem Soc ; 143(35): 14235-14241, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460242

RESUMO

When electrons are injected through a chiral molecule, the resulting current may become spin polarized. This effect, known as the chirality-induced spin-selectivity (CISS) effect, has been suggested to emerge due to the interplay between spin-orbit interactions and the chirality within the molecule. However, such explanations require unrealistically large values for the molecular spin-orbit interaction. Here, we present a theory for the CISS effect based on the interplay between spin-orbit interactions in the electrode, the chirality of the molecule (which induces a solenoid field), and spin-transfer torque at the molecule-electrode interface. Using a mean-field calculation with simple models for the molecular junction, we show that our phenomenological theory can qualitatively account for all key experimental observations, most importantly the magnitude of the CISS with realistic parameters. We also provide a set of predictions which can be readily tested experimentally.

6.
ACS Nano ; 15(5): 8724-8732, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33904296

RESUMO

We provide a complete quantitative theory for light emission from Drude metals under continuous wave illumination, based on our recently derived steady-state nonequilibrium electron distribution. We show that the electronic contribution to the emission exhibits a dependence on the emission frequency which is very similar to the energy dependence of the nonequilibrium distribution, and characterize different scenarios determining the measurable emission line shape. This enables the identification of experimentally relevant situations, where the emission lineshapes deviate significantly from predictions based on the standard theory (namely, on the photonic density of states), and enables the differentiation between cases where the emission scales with the metal object surface or with its volume. We also provide an analytic description (which is absent from the literature) of the (polynomial) dependence of the metal emission on the electric field, its dependence on the pump laser frequency, and its nontrivial exponential dependence on the electron temperature, both for the Stokes and anti-Stokes regimes. Our results imply that the emission does not originate from either Fermion statistics (due to e-e interactions), and even though one could have expected the emission to follow boson statistics due to involvement of photons (as in Planck's Black Body emission), it turns out that it deviates from that form as well. Finally, we resolve the arguments associated with the effects of electron and lattice temperatures on the emission, and which of them can be extracted from the anti-Stokes emission.

7.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33597236

RESUMO

Answering the titular question has become a central motivation in the field of quantum biology, ever since the idea was raised following a series of experiments demonstrating wave-like behavior in photosynthetic complexes. Here, we report a direct evaluation of the effect of quantum coherence on the efficiency of three natural complexes. An open quantum systems approach allows us to simultaneously identify their level of "quantumness" and efficiency, under natural physiological conditions. We show that these systems reside in a mixed quantum-classical regime, characterized by dephasing-assisted transport. Yet, we find that the change in efficiency at this regime is minute at best, implying that the presence of quantum coherence does not play a substantial role in enhancing efficiency. However, in this regime, efficiency is independent of any structural parameters, suggesting that evolution may have driven natural complexes to their parameter regime to "design" their structure for other uses.

8.
Chem Sci ; 11(19): 5017-5027, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34122958

RESUMO

Recent experiments claimed that the catalysis of reaction rates in numerous bond-dissociation reactions occurs via the decrease of activation barriers driven by non-equilibrium ("hot") electrons in illuminated plasmonic metal nanoparticles. Thus, these experiments identify plasmon-assisted photocatalysis as a promising path for enhancing the efficiency of various chemical reactions. Here, we argue that what appears to be photocatalysis is much more likely thermo-catalysis, driven by the well-known plasmon-enhanced ability of illuminated metallic nanoparticles to serve as heat sources. Specifically, we point to some of the most important papers in the field, and show that a simple theory of illumination-induced heating can explain the extracted experimental data to remarkable agreement, with minimal to no fit parameters. We further show that any small temperature difference between the photocatalysis experiment and a control experiment performed under external heating is effectively amplified by the exponential sensitivity of the reaction, and is very likely to be interpreted incorrectly as "hot" electron effects.

9.
Chem Sci ; 11(33): 9024-9025, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34125112

RESUMO

In his Comment to our paper "Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis", Jain correctly points out that using an Arrhenius fit to the reaction rate is not enough to distinguish thermal from non-thermal effects.

10.
Light Sci Appl ; 8: 89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645933

RESUMO

Understanding the interplay between illumination and the electron distribution in metallic nanostructures is a crucial step towards developing applications such as plasmonic photocatalysis for green fuels, nanoscale photodetection and more. Elucidating this interplay is challenging, as it requires taking into account all channels of energy flow in the electronic system. Here, we develop such a theory, which is based on a coupled Boltzmann-heat equations and requires only energy conservation and basic thermodynamics, where the electron distribution, and the electron and phonon (lattice) temperatures are determined uniquely. Applying this theory to realistic illuminated nanoparticle systems, we find that the electron and phonon temperatures are similar, thus justifying the (classical) single-temperature models. We show that while the fraction of high-energy "hot" carriers compared to thermalized carriers grows substantially with illumination intensity, it remains extremely small (on the order of 10-8). Importantly, most of the absorbed illumination power goes into heating rather than generating hot carriers, thus rendering plasmonic hot carrier generation extremely inefficient. Our formulation allows for the first time a unique quantitative comparison of theory and measurements of steady-state electron distributions in metallic nanostructures.

11.
Science ; 364(6439)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048461

RESUMO

Zhou et al (Reports, 5 October 2018, p. 69) claim to have proven dominance of "hot" electrons over thermal effects in plasmonic photocatalysis. We identify experimental flaws that caused overestimation of the hot carrier contribution. As an alternative interpretation, we fully reproduce their data using a purely thermal Arrhenius law with a fixed activation energy and intensity-dependent heating.

12.
Faraday Discuss ; 214: 215-233, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30849158

RESUMO

In a recent paper, we derived a self-consistent theory of the steady-state electron distribution of a metal under continuous wave illumination which treats thermal and non-thermal effects on the same footing. Here, we re-derive the main analytical results of that study from very simple arguments, and draw a series of conclusions which contradict claims made in previous studies of the steady-state distribution. In particular, we show that the faster chemical reactions reported in many previous papers are extremely unlikely to originate from high energy non-thermal electrons. Instead, the faster reactions very likely originate from a purely thermal effect.

13.
J Phys Chem Lett ; 9(11): 3143-3148, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29791167

RESUMO

The interplay between excitons and vibrations is considered to be a key factor in determining the exciton-transfer properties in light-harvesting complexes. Here we study this interplay theoretically in a model for exciton transport, composed of two chromophores coupled to an exciton source and sink in the presence of vibrations. We consider two cases that show qualitatively distinct transport features. In the first, the vibrations are global and affect the two chromophores simultaneously. In the second case, the vibrations are localized on each chromophore. For global vibrations, the current exhibits antiresonances as a function of the chromophore energy difference, which are due to exciton-polaron interference. For local vibrations, on the contrary, the currents show tunneling resonances at multiples of the vibration energy. Counterintuitively, both effects increase with increasing temperature. Our results demonstrate that an environment can either assist or hamper exciton transport and is in accord with the current understanding of energy transfer in natural exciton-transfer complexes.

14.
J Phys Chem Lett ; 9(7): 1689-1695, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29537848

RESUMO

Environment-assisted quantum transport (ENAQT) is the possibility of an external environment to enhance transport efficiency of quantum particles. This idea has generated much excitement over recent years, especially due to the experimentally motivated possibility of ENAQT in photosynthetic exciton transfer complexes. Many theoretical calculations have shown ENAQT, but the explanations for its origin differ, and a universal explanation has been elusive. Here we demonstrate a universal origin for ENAQT in quantum networks with a dephasing environment, based on a relation between exciton current and occupation within a Markovian open quantum system approach. We show that ENAQT appears due to two competing processes, namely, the tendency of dephasing to make the exciton population uniform, and the formation of an exciton density gradient, defined by the source and the sink. Furthermore, we find a geometric condition on the network for the appearance of ENAQT, relevant to natural and artificial systems.

15.
J Am Chem Soc ; 140(1): 70-73, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29249160

RESUMO

We report on a theoretical analysis and experimental verification of a mechanism for photoconductance, the change in conductance upon illumination, in symmetric single-molecule junctions. We demonstrate that photoconductance at resonant illumination arises due to the Coulomb interaction between the electrons and holes in the molecular bridge, so-called exciton-binding. Using a scanning tunneling microscopy break junction technique, we measure the conductance histograms of perylene tetracarboxylic diimide (PTCDI) molecules attached to Au-electrodes, in the dark and under illumination, and show a significant and reversible change in conductance, as expected from the theory. Finally, we show how our description of the photoconductance leads to a simple design principle for enhancing the performance of molecular switches.

16.
Nano Lett ; 18(1): 357-364, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236508

RESUMO

Hybrid semiconductor-metallic nanostructures play an important role in a wide range of applications and are key components in photocatalysis. Here we reveal that the nature of a nanojunction formed between a semiconductor nanorod and metal nanoparticle is sensitive to the size of the metal component. This is reflected in the activity toward hydrogen production, emission quantum yields, and the efficiency of charge separation which is determined by transient absorption spectroscopy. A set of Ni decorated CdSe@CdS nanorods with different tip size were examined, and an optimal metal domain size of 5.2 nm was obtained. Remarkably, charge separation time constants were found to be nonvariant with metal tip size. It is proposed that electron transfer mechanism encompasses two consecutive but separate processes: slow charge migration along the rod toward the interface, followed by fast interface crossing of the electron from the semiconductor into the metal phase. The first migration step dominates the time constant for the charge separation process and is not affected by the metal size. The efficiency of charge separation on the other hand was found to be sensitive to metal size. It is suggested that Coulomb blockade charging energy and a size-dependent Schottky barrier contribute to the metal size effect on charge transfer probability across the semiconductor-metal nanojunction. These two opposing trends result in an optimal metal size domain for the cocatalyst. This work is expected to benefit a broad range of applications utilizing semiconductor-metal nanocomposites.

17.
Phys Rev B ; 972018.
Artigo em Inglês | MEDLINE | ID: mdl-30997441

RESUMO

Topological effects typically discussed in the context of quantum physics are emerging as one of the central paradigms of physics. Here, we demonstrate the role of topology in energy transport through dimerized micro- and nano-mechanical lattices in the classical regime, i.e., essentially "masses and springs". We show that the thermal conductance factorizes into topological and nontopological components. The former takes on three discrete values and arises due to the appearance of edge modes that prevent good contact between the heat reservoirs and the bulk, giving a length-independent reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts, opening a direction to explore the ramifications of topological properties on nanoscale technology.

18.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28332323

RESUMO

Transition metal oxides are complex electronic systems that exhibit a multitude of collective phenomena. Two archetypal examples are VO2 and NdNiO3 , which undergo a metal-insulator phase transition (MIT), the origin of which is still under debate. Here this study reports the discovery of a memory effect in both systems, manifested through an increase of resistance at a specific temperature, which is set by reversing the temperature ramp from heating to cooling during the MIT. The characteristics of this ramp-reversal memory effect do not coincide with any previously reported history or memory effects in manganites, electron-glass or magnetic systems. From a broad range of experimental features, supported by theoretical modelling, it is found that the main ingredients for the effect to arise are the spatial phase separation of metallic and insulating regions during the MIT and the coupling of lattice strain to the local transition temperature of the phase transition. We conclude that the emergent memory effect originates from phase boundaries at the reversal temperature leaving "scars" in the underlying lattice structure, giving rise to a local increase in the transition temperature. The universality and robustness of the effect shed new light on the MIT in complex oxides.

19.
Phys Rev E ; 95(1-1): 012137, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208409

RESUMO

We present a method for calculating analytically the thermal conductance of a classical harmonic lattice with both alternating masses and nearest-neighbor couplings when placed between individual Langevin reservoirs at different temperatures. The method utilizes recent advances in analytic diagonalization techniques for certain classes of tridiagonal matrices. It recovers the results from a previous method that was applicable for alternating on-site parameters only, and extends the applicability to realistic systems in which masses and couplings alternate simultaneously. With this analytic result in hand, we show that the thermal conductance is highly sensitive to the modulation of the couplings. This is due to the existence of topologically induced edge modes at the lattice-reservoir interface and is also a reflection of the symmetries of the lattice. We make a connection to a recent work that demonstrates thermal transport is analogous to chemical reaction rates in solution given by Kramers' theory [Velizhanin et al., Sci. Rep. 5, 17506 (2015)]2045-232210.1038/srep17506. In particular, we show that the turnover behavior in the presence of edge modes prevents calculations based on single-site reservoirs from coming close to the natural-or intrinsic-conductance of the lattice. Obtaining the correct value of the intrinsic conductance through simulation of even a small lattice where ballistic effects are important requires quite large extended reservoir regions. Our results thus offer a route for both the design and proper simulation of thermal conductance of nanoscale devices.

20.
Sci Rep ; 6: 35116, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734919

RESUMO

In spite of extended efforts, detecting thermoelectric effects in superconductors has proven to be a challenging task, due to the inherent superconducting particle-hole symmetry. Here we present a theoretical study of an experimentally attainable Superconductor - Quantum Dot - Superconductor (SC-QD-SC) Josephson Junction. Using Keldysh Green's functions we derive the exact thermo-phase and thermal response of the junction, and demonstrate that such a junction has highly tunable thermoelectric properties and a significant thermal response. The origin of these effects is the QD energy level placed between the SCs, which breaks particle-hole symmetry in a gradual manner, allowing, in the presence of a temperature gradient, for gate controlled appearance of a superconducting thermo-phase. This thermo-phase increases up to a maximal value of ±π/2 after which thermovoltage is expected to develop. Our calculations are performed in realistic parameter regimes, and we suggest an experimental setup which could be used to verify our predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...