Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198892


This study investigated the antioxidant activity DPPH, ABTS, and Folin-Ciocalteu methods of betulin (compound 1) and its derivatives (compounds 2-11). Skin permeability and accumulation associated with compounds 1 and 8 were also examined. Identification of the obtained products (compound 2-11) and betulin isolated from plant material was based on the analysis of 1H- NMR and 13C-NMR spectra. The partition coefficient was calculated to determine the lipophilicity of all compounds. In the next stage, the penetration through pig skin and its accumulation in the skin were evaluated of ethanol vehicles containing compound 8 (at a concentration of 0.226 mmol/dm3), which was characterized by the highest antioxidant activity. For comparison, penetration studies of betulin itself were also carried out. Poor solubility and the bioavailability of pure compounds are major constraints in combination therapy. However, we observed that the ethanol vehicle was an enhancer of skin permeation for both the initial betulin and compound 8. The betulin 8 derivative showed increased permeability through biological membranes compared to the parent betulin. The paper presents the transformation of polycyclic compounds to produce novel derivatives with marked antioxidant activities and as valuable intermediates for the pharmaceutical industry. Moreover, the compounds contained in the vehicles, due to their mechanism of action, can have a beneficial effect on the balance between oxidants and antioxidants in the body, minimizing the effects of oxidative stress. The results of this work may contribute to knowledge regarding vehicles with antioxidant potential. The use of vehicles for this type of research is therefore justified.

Antioxidantes/farmacologia , Pele/química , Triterpenos/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidade Biológica , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Absorção Cutânea , Solubilidade , Suínos , Triterpenos/química , Triterpenos/farmacocinética
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200719


The potential of bacterial cellulose as a carrier for the transport of ibuprofen (a typical example of non-steroidal anti-inflammatory drugs) through the skin was investigated. Ibuprofen and its amino acid ester salts-loaded BC membranes were prepared through a simple methodology and characterized in terms of structure and morphology. Two salts of amino acid isopropyl esters were used in the research, namely L-valine isopropyl ester ibuprofenate ([ValOiPr][IBU]) and L-leucine isopropyl ester ibuprofenate ([LeuOiPr][IBU]). [LeuOiPr][IBU] is a new compound; therefore, it has been fully characterized and its identity confirmed. For all membranes obtained the surface morphology, tensile mechanical properties, active compound dissolution assays, and permeation and skin accumulation studies of API (active pharmaceutical ingredient) were determined. The obtained membranes were very homogeneous. In vitro diffusion studies with Franz cells were conducted using pig epidermal membranes, and showed that the incorporation of ibuprofen in BC membranes provided lower permeation rates to those obtained with amino acids ester salts of ibuprofen. This release profile together with the ease of application and the simple preparation and assembly of the drug-loaded membranes indicates the enormous potentialities of using BC membranes for transdermal application of ibuprofen in the form of amino acid ester salts.

Aminoácidos/química , Anti-Inflamatórios não Esteroides/farmacologia , Celulose/química , Ésteres/química , Ibuprofeno/farmacologia , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Suínos
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200927


Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.

Antioxidantes/administração & dosagem , Celulose/química , Epilobium/química , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Pele/efeitos dos fármacos , Administração Tópica , Animais , Bactérias/química , Fibroblastos/metabolismo , Camundongos , Pele/metabolismo , Suínos
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200200


Epilobium angustifolium L. is a popular and well-known medicinal plant. In this study, an attempt to evaluate the possibility of using this plant in preparations for the care and treatment of skin diseases was made. The antioxidant, antiaging and anti-inflammatory properties of ethanolic extracts from Epilobium angustifolium (FEE) were assessed. Qualitative and quantitative evaluation of extracts chemically composition was performed by gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The total polyphenol content (TPC) of biologically active compounds, such as the total content of polyphenols (TPC), flavonoids (TFC), and assimilation pigments, as well as selected phenolic acids, was assessed. FEE was evaluated for their anti-inflammatory and antiaging properties, achieving 68% inhibition of lipoxygenase activity, 60% of collagenase and 49% of elastase. FEE also showed high antioxidant activity, reaching to 87% of free radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 59% using 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, in vitro penetration studies were performed using two vehicles, i.e., a hydrogel and an emulsion containing FEE. These studies showed that the active ingredients contained in FEE penetrate through human skin and accumulate in it. The obtained results indicate that E. angustifolium may be an interesting plant material to be applied as a component of cosmetic and dermatological preparations with antiaging and anti-inflammatory properties.

Cosméticos/química , Fármacos Dermatológicos/química , Epilobium/química , Extratos Vegetais/química , Anti-Inflamatórios/química , Antioxidantes/química , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Plantas Medicinais/química , Polifenóis/química , Pele/efeitos dos fármacos
Acta Sci Pol Technol Aliment ; 20(1): 37-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449518


BACKGROUND: Extracts of milk thistle, particularly from seeds, are used as a valuable source of natural antioxidants in different industries, for example pharmaceutical and cosmetic. The leaves and flowers are also known to be a source of biologically active compounds, as well as those with an antioxidant capacity. The selection of the extraction parameters, such as type and concentration of extractant, and extraction time, have an impact on the antioxidant capacity of the obtained extracts. The aim of this study was to evaluate the antioxidant activities of extracts obtained using different parts of raw material. The impact of different parameters of extraction on antioxidant capacity was also assessed. METHODS: The seeds, flowers and leaves were extracted using a Soxhlet apparatus, ultrasound and shaking. 96% (v/v) and 70% (v/v) ethanol, concentrated methanol, acetone and petroleum ether were applied as solvents. The impact of the extraction time was also evaluated. The extracts were evaluated using DPPH, ABTS, FRAP and Folin-Ciocalteu techniques. RESULTS: The obtained extracts, except for the samples in petroleum ether, showed the antioxidant capacity. Soxhlet extraction, especially that which uses ethanol, methanol and acetone, seems to be a valuable extraction method. CONCLUSIONS: To sum up, many factors could affect the antioxidant capacity and the total polyphenol content of Silybum marianum L. extracts. The solvent and an appropriately selected extraction method seem to be important factors in the effective isolation of active substances and could lead to the more effective application of this valuable plant material in different industries.

AMB Express ; 10(1): 187, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078274


The aim of the study was to determine the antioxidant activity and assess the lipophilicity and skin penetration of eugenyl chloroacetate (EChA), eugenyl dichloroacetate (EDChA), and eugenyl trichloroacetate (ETChA). Identification of the obtained products was based on gas chromatography (GC), infrared spectroscopy (FTIR/ATR), gas chromatography coupled with mass spectrometry (GC-MS), and the analysis of 13C-NMR and 1H-NMR spectra. The antioxidative capacity of the derivatives obtained was determined by the DPPH free radical reduction method, while the octanol/water partition coefficient (shake-flask method) was tested to determine the lipophilicity of these compounds. In the next stage of testing EDChA and ETChA-(compounds characterized by the highest degree of free radical scavenging), the penetration of DPPH through pig skin and its accumulation in the skin were evaluated. For comparison, penetration studies of eugenol alone as well as dichloroacetic acid (DChAA) and trichloroacetic acid (TChAA) were also carried out. The antioxidant activity (DPPH, ABTS, and Folin-Ciocalteu methods) of the fluid that penetrated through pig skin was also evaluated. The in vitro pig skin penetration study showed that eugenol derivatives are particularly relevant for topical application. The obtained derivatives were characterized by a high level of antioxidant activity estimated after 24 h of conducting the experiment, which indicates long-term protection against reactive oxygen species (ROS) in the deeper layers of the skin.