Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(49): 16256-16265, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31696717

RESUMO

The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF3 nanodiscs. Their surface modification by bisphosphonate ligands led to stable, highly concentrated, colloidal suspensions in water. Despite the low aspect ratio of the nanodiscs (∼6), a liquid-crystalline nematic phase spontaneously appeared in these colloidal suspensions. Thanks to the paramagnetic character of the nanodiscs, the nematic phase was easily aligned by a weak (0.5 T) magnetic field, which provides a simple and convenient way of orienting all of the nanodiscs in suspension in the same direction. Moreover, the more dilute, isotropic, suspensions displayed strong (electric and magnetic) field-induced orientation of the nanodiscs (Kerr and Cotton-Mouton effects), with fast enough response times to make them suitable for use in electro-optic devices. Furthermore, an emission study showed a direct relation between the luminescence intensity and magnetic-field-induced orientation of the colloids. Finally, with their fast radiative recombination decay rates, the nanodiscs show luminescence properties that compare quite favorably with those of bulk CeF3. Therefore, these CeF3 nanodiscs are very promising building blocks for the development and processing of photosensitive materials for sensor applications.

2.
Nanoscale ; 11(14): 6897-6904, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912782

RESUMO

Atomically dispersed metals promise the ultimate catalytic efficiency, but their stabilization onto suitable supports remains challenging owing to their aggregation tendency. Focusing on the industrially-relevant Pt/γ-Al2O3 catalyst, in situ X-ray absorption spectroscopy and environmental scanning transmission electron microscopy allow us to monitor the stabilization of Pt single atoms under O2 atmosphere, as well as their aggregation into mobile reduced subnanometric clusters under H2. Density functional theory calculations reveal that oxygen from the gas phase directly contributes to metal-support adhesion, maximal for single Pt atoms, whereas hydrogen only adsorbs on Pt, and thereby leads to Pt clustering. Finally, Pt cluster mobility is shown to be activated at low temperature and high H2 pressure. Our results highlight the crucial importance of the reactive atmosphere on the stability of single-atom versus cluster catalysts.

3.
ACS Appl Mater Interfaces ; 10(38): 32304-32312, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30180538

RESUMO

The intrinsic properties of silica aerogels make them well suited for applications requiring high surface area. Therefore, the dispersion of functional nanoparticles (NPs) in these highly porous structures gives access to materials for wide range of applications such as catalysis, energy storage or sensing. The last one is particularly interesting if such composites possess good optical quality. Herein, the synthesis of monolithic and transparent silica aerogels highly loaded with Y3Al5O12:Ce nanocrystals (NCs) (up to 50 wt %) is reported. The developed composite aerogels can be impregnated with liquids, contrary to most of existing aerogels, which crack because of the strong capillary forces. Therefore, this system is designed as a novel concept of 3D porous scintillator, using the efficient photoluminescent and scintillating properties of Y3Al5O12:Ce. The investigated fluid containing low-energetic ionizing radiation emitters impregnates the material, which assures the efficient harvesting of radiation because of highly developed surface area. Such composites prove to be efficient new-type detectors of low-energy beta radiation both in liquids and gases.

4.
Photochem Photobiol ; 93(6): 1439-1448, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28574176

RESUMO

We report the design and synthesis of europium-doped gadolinium oxysulfide nanoscintillators Gd2 O2 S:Eu3+ conjugated with two different photosensitizers (PSs): a zinc chlorin (ZnTPC) and a zinc phtalocyanine (ZnPc) by covalent bonding through a layer of N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA). These conjugates were designed to be activated under X-ray excitation to allow a photodynamic effect, although this desired outcome was not achieved in this study. The monodispersed nanoparticles of ∼70 nm diameter were pegylated to be stabilized in aqueous suspension. It was shown that the PSs conserved their photophysical properties once conjugated to the nanoscintillator and efficient singlet oxygen was obtained upon photo-irradiation. However, no energy transfer was observed from the nanoscintillator to the photosensitizer neither under photo- nor X-ray irradiation.

5.
J Colloid Interface Sci ; 489: 114-125, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27576000

RESUMO

Carbon-based materials are of great technological and scientific interest in materials science. Pulsed laser ablation in liquids (PLAL) is extensively used as a method to produce nanoparticles including nanodiamond and related materials. In this feature article, we will review the use of PLAL to tackle the challenges of synthesizing carbon-based nanostructures. Surprisingly, reported results have shown very poor reproducibility despite the use of similar experimental conditions. We use plasma spectroscopy and shadowgraph imaging to provide a picture of the thermodynamic properties, and then to better understand this apparent contradiction. Our study was carried out under traditional conditions which involve nanosecond laser, and radiant exposures from tens to thousands J/cm2. Prompted by these results, the different scenarios reported in the literature are discussed including shockwave induced phase transition, growth in high temperatures-high pressures like conditions, and vapor phase chemistry.

6.
Chemphyschem ; 18(5): 493-499, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28006081

RESUMO

The influence of Ca codoping on the optical absorption, photo-, radio-, and thermo-luminescence properties of YAlO3 :Ce (YAP:Ce) crystals has been studied for four different calcium concentrations ranging from 0 to 500 ppm. Ca codoping results in a partial oxidation of Ce3+ into Ce4+ , The luminescence time response under pulsed X-ray excitation of the Ce3+ /Ce4+ admixure clearly demonstrates the role of hole migration on both the rise time and the generally observed slow components. From an application point of view, Ca codoping significantly improves the timing performances, but the induced presence of Ce4+ ions is also the cause of a reduction in scintillation efficiency.

7.
ACS Appl Mater Interfaces ; 8(34): 22361-8, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27503143

RESUMO

We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We find that controlling the kinetic energy of the matrix precursors by means of the oxygen pressure in the deposition chamber facilitates the survival of the encapsulated species, whose well-conserved optical properties such as emission intensity, luminescence spectrum, fluorescence lifetime, and efficiency as single-photon emitters we document in detail. Our method can be extended to different types of nanoemitters (e.g., nanorods, dots-in-rods, nanoplatelets) as well as to other matrices (oxides, semiconductors, metals), opening up new vistas for the realization of fully inorganic multilayered active devices based on colloidal nano-objects.

8.
Nanoscale ; 8(4): 2317-25, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26750539

RESUMO

We explore the potential of CdSe/ZnS colloidal quantum dots (QDs) as probes for their immediate dielectric environment, based on the influence of the local refractive index on the fluorescence dynamics of these nanoemitters. We first compare ensembles of quantum dots in homogeneous solutions with single quantum dots dispersed on various dielectric substrates, which allows us to test the viability of a conceptual framework based on a hard-sphere region-of-influence and the Bruggeman effective-medium approach. We find that all our measurements can be integrated into a coherent description, provided that the conceptualized point-dipole emitter is positioned at a distance from the substrate that corresponds to the geometry of the QD. Three theoretical models for the evolution of the fluorescence decay rate as a function of the local refractive index are compared, showing that the classical Lorentz approach (virtual cavity) is the most appropriate for describing the data. Finally, we use the observed sensitivity of the QDs to their environment to estimate the detection limit, expressed as the minimum number of traceable streptavidin molecules, of a potential QD-nanosensor based on fluorescence lifetime.


Assuntos
Cádmio/química , Pontos Quânticos/química , Selênio/química , Sulfetos/química , Compostos de Zinco/química
9.
Phys Chem Chem Phys ; 18(2): 1178-84, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26662042

RESUMO

X-ray induced luminescence sensitization results have been obtained on three commercially relevant scintillators, namely CsI:Tl, YAG:Ce and LSO:Ce. The obtained curves have been used to validate a model based on the competition among trapping and recombination of free charge carriers. The model was able to accurately describe the complex phenomenology of the detected sensitization curves. We also used the model to predict the role of a high temperature and concentration trap in shaping the sensitization curves. Based on these modelling results we also proposed a novel, and rather counterintuitive, strategy to deal with the sensitization phenomenon based on the deliberate introduction of deep traps which can significantly reduce the bright burn effect.

10.
J Phys Chem A ; 119(33): 8944-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26214730

RESUMO

A predictive model for nanoparticle nucleation has not yet been successfully achieved. Classical nucleation theory fails because the atomistic nature of the seed has to be considered. Indeed, geometrical structure as well as stoichiometry do not always match the bulk values. We present a fully microscopic approach based on a first-principle study of aluminum oxide clusters. We calculated stable structures of AlxOy and their associated thermodynamic properties. From these data, the chemical composition of a gas composed of aluminum and oxygen atoms can be calculated as a function of temperature, pressure, and aluminum to oxygen ratio. We demonstrate the accuracy of this approach in reproducing experimental results obtained with time-resolved spectroscopy of a laser-induced plasma from an Al2O3 target. We thus extended the calculation to lower temperatures, i.e., longer time scales, to propose a scenario of composition gas evolution leading to the first alumina seeds.

11.
Nanoscale ; 7(13): 5744-51, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25746211

RESUMO

Scintillating nanoparticles (NPs) in combination with X-ray or γ-radiation have a great potential for deep-tissue cancer therapy because they can be used to locally activate photosensitizers and generate singlet oxygen in tumours by means of the photodynamic effect. To understand the complex spatial distribution of energy deposition in a macroscopic volume of water loaded with nanoscintillators, we have developed a GEANT4-based Monte Carlo program. We thus obtain estimates of the maximum expected efficiency of singlet oxygen production for various materials coupled to PS, X-ray energies, NP concentrations and NP sizes. A new parameter, ηnano, is introduced to quantify the fraction of energy that is deposited in the NPs themselves, which is crucial for the efficiency of singlet oxygen production but has not been taken into account adequately so far. We furthermore emphasise the substantial contribution of primary interactions taking place in water, particularly under irradiation with high energy photons. The interplay of all these contributions to the photodynamic effect has to be taken into account in order to optimize nanoscintillators for therapeutic applications.


Assuntos
Transferência de Energia/efeitos da radiação , Modelos Estatísticos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Fotoquimioterapia/métodos , Raios X , Simulação por Computador , Método de Monte Carlo , Doses de Radiação , Oxigênio Singlete/química
12.
ACS Nano ; 9(1): 886-93, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25549009

RESUMO

We present an unbiased and robust analysis method for power-law blinking statistics in the photoluminescence of single nanoemitters, allowing us to extract both the bright- and dark-state power-law exponents from the emitters' intensity autocorrelation functions. As opposed to the widely used threshold method, our technique therefore does not require discriminating the emission levels of bright and dark states in the experimental intensity timetraces. We rely on the simultaneous recording of 450 emission timetraces of single CdSe/CdS core/shell quantum dots at a frame rate of 250 Hz with single photon sensitivity. Under these conditions, our approach can determine ON and OFF power-law exponents with a precision of 3% from a comparison to numerical simulations, even for shot-noise-dominated emission signals with an average intensity below 1 photon per frame and per quantum dot. These capabilities pave the way for the unbiased, threshold-free determination of blinking power-law exponents at the microsecond time scale.

13.
Phys Chem Chem Phys ; 16(45): 24824-9, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25319509

RESUMO

We report the scintillation properties of BaAl4O7:Eu(2+), a transparent polycrystalline ceramic prepared by full and congruent crystallization of glass. We show that a small deviation from the stoichiometric composition as well as thermal treatment duration play a crucial role in the formation of charge carrier traps, leading to a strong influence on the scintillation yield. We demonstrate that when the traps are not entirely removed, X-ray irradiation allows them to be permanently filled in order to significantly enhance the scintillation output. Finally, the best sample obtained demonstrates performances able to compete with a commercially available scintillating material, CsI:Tl.

14.
Phys Chem Chem Phys ; 16(41): 22583-7, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25231158

RESUMO

The zero-phonon electronic transitions in Cr(3+) and Ce(3+) impurity ions in a series of Lu3xY3-3xAl5O12 (0 < x < 1) garnet solid solution crystals were studied experimentally. It was observed that in contrast to the case of Ce(3+), the modification of zero-phonon R-line ((2)E-(4)A2) fluorescence spectra of Cr(3+) ions with changing x occurs in a discrete fashion and is not accompanied by strong inhomogeneous broadening, as usually happens in solid solutions. The effect is ascribed to the high C3i symmetry of the Cr(3+)(Al(3+)) sites that allows only a limited number of non-equivalent Cr(3+) centers in a mixed environment. The energies and radiative lifetimes of the (2)E states of locally identical Cr(3+) centers inside different mixed garnet matrices were studied and the observed dependences on the Lu content x are discussed in terms of lattice compression and dilation.

15.
Phys Chem Chem Phys ; 16(3): 963-73, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24281437

RESUMO

Pulsed laser ablation has proved its reliability for the synthesis of nano-particles and nano-structured materials, including metastable phases and complex stoichiometries. The possible nucleation of the nanoparticles in the gas phase and their growth has been little investigated, due to the difficulty of following the gas composition as well as the thermodynamic parameters. We show that such information can be obtained from the optically active plasma during its short lifetime, only a few microseconds for each laser pulse, as a result of a quick quenching due to the liquid environment. For this purpose, we follow the laser ablation of an α-Al2O3 target (corindon) in water, which leads to the synthesis of nanoparticles of γ-Al2O3. The AlO blue-green emission and the Al(I) (2)P(0)-(2)S doublet emission provide the electron density, the density ratio between the Al atoms and AlO molecules, and the rotational and vibrational temperatures of the AlO molecules. These diagnostic considerations are discussed in the framework of theoretical studies from the literature (density functional theory). We have found that starting from a hot atomized gas, the nucleation cannot occur in the first microseconds. We also raise the question of the influence of water on the control of the stoichiometry.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24229285

RESUMO

Thermosensitive fluorescent nanoparticles seeded in deionized water combined with confocal microscopy enables thermal mapping over three dimensions of the liquid phase flowing through a microchannel interrupted by a microdiaphragm. This experiment reveals the presence of a strong thermal gradient up to ~10(5) K/m only when hydrodynamic cavitation is present. Here hydrodynamic cavitation is the consequence of high shear rates downstream in the diaphragm. This temperature gradient is located in vortical structures associated with eddies in the shear layers. We attribute such overheating to the dissipation involved by the cavitating flow regime. Accordingly, we demonstrate that the microsizes of the device enhance the intensity of the thermal gap.

17.
Dalton Trans ; 42(35): 12633-43, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23648591

RESUMO

A series of anhydrous cerium(III) trifluoroacetate complexes with neutral O-donor ligands, namely Ce2(OAc)(TFA)5(DMF)3 (1), Ce(TFA)3(L)x [x = 2, L = THF (2), DMF (3), DMSO (4); x = 1, L = diglyme (5)] and Ce2(TFA)6(DMSO)x(DMF)y [x = 6, y = 0 (6); x = 4, y = 2 (7)] (where OAc = acetate, TFA = trifluoroacetate, THF = tetrahydrofuran, DMF = dimethylformamide, DMSO = dimethylsulphoxide, and diglyme = MeO(C2H4O)2Me] were synthesized and completely characterized by elemental analysis, FT-IR spectroscopy and TG-DTA-MS studies. A partially hydrated complex [Ce(TFA)3(diglyme)(H2O)] (8) was obtained by slow evaporation of the THF solution of anhydrous 5 in the air. The single crystal X-ray diffraction analysis of 1, 3, 4, and 6­8 showed the versatile bonding mode of the TFA ligand (terminal, chelating and bridging). These complexes, on decomposition in 1-octadecene in inert atmosphere, gave CeF3 nanoparticles of 8­11 nm size. The complex 5 proved to be the best precursor in the series because of the ability of the diglyme ligand to act as capping reagent during decomposition to render the CeF3 particles monodisperse in organic solvents. The obtained CeF3 nanoparticles were characterized by FT-IR, EDX analysis and TEM studies and their luminescence and scintillation responses under UV and X-ray excitation were studied and compared with that of CeF3 single crystal.

18.
Opt Express ; 20(3): 3200-8, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330557

RESUMO

We present a novel approach for convenient tuning of the local refractive index around nanostructures. We apply this technique to study the influence of the local refractive index on the radiative decay time of CdSe/ZnS quantum dots with three distinct emission wavelengths. The dependence of the luminescence decay time on the environment is well described by an effective medium approach. A critical distance of about 80 nm is found for the determination of the effective local index of refraction. An estimation for the emitting-state quantum efficiency can be extracted.


Assuntos
Algoritmos , Medições Luminescentes/métodos , Teste de Materiais/métodos , Pontos Quânticos , Refratometria/métodos , Semicondutores , Espectrometria de Fluorescência/métodos
19.
Phys Chem Chem Phys ; 14(7): 2203-15, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22134498

RESUMO

Interaction of a Co-BEA catalyst with individual components (NO, C(3)H(6), CO, O(2)) and mixtures simulating the real feed of the selective catalytic reduction (SCR) of nitric oxide in static and pulse experiments at variable temperatures was investigated by means of IR, EPR, and operando DRIFT spectroscopy coupled with QMS/GC analysis of the products. Speciation of cobalt active sites into Co(II), mono- and polynuclear oxo-cobalt species as well as CoO clusters was quantified by IR using CO and NO as probe molecules. The key intermediates, by-products, and final products of the SCR reaction were identified and their spectroscopic signatures ascertained. Based on the spectroscopic operando results, a concise mechanistic scheme of the selective catalytic reduction of nitric oxide by propene, triggered by a two-electron Co(II)/Co(0) redox couple, was developed. It consists of a complex network of the sequential/parallel selective reduction steps that are interlocked by the rival nonselective oxidation of the intermediates and their thermal decomposition. It has been shown that the SCR process is initiated by the chemoselective capture of NO from the reaction mixture by the cobalt active sites leading to the cobalt(II) dinitrosyls, which in the excess of oxygen are partially oxidized to surface nitrates and nitrites. N(2)O is produced by semi-decomposition of the dinitrosyl intermediates on the mononuclear centers, whereas NO(2)via NO oxidation on the polynuclear oxo-cobalt sites. Cyanide and isocyanate species, formed together with propene oxygenates in the course of the C=C bond scission, are the mechanistically pivotal reaction intermediates of C(3)H(6) interaction with the dinitrosyles and NO(3)(-)/NO(2)(-) surface species. Dinitrogen is produced by three main reaction routes involving oxidation of cyanides by NO/NO(2), reduction of dinitrosyls, nitrates, and nitrites by propene oxygenates (medium temperature range) or their reduction by carbon monoxide (high temperature range).

20.
Langmuir ; 27(9): 5555-61, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21469685

RESUMO

Crystalline rare earth fluoride nanoparticles were synthesized by reacting rare earth ions with charge-transfer complexes, in solution, under mild conditions. An infrared study showed that these intermediate complexes are made up of solvent molecules (amide: N,N-dimethylformamide, 1-methyl-2-pyrrolidinone, etc.) and fluoride ions coming from hydrofluoric acid. The size and shape of the particles can be controlled through the process parameters. The complete study of the particles obtained through this process is carried out in this document, especially for the YbF(3) system. However, the process can easily be extended to the whole series of rare earth elements. We also show the ability of these objects to be transferred from an aqueous medium to an organic phase thanks to their surface modification. Finally, transparent monolithic xerogels of rare earth fluoride have been developed starting from the prepared colloidal solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA