Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e11714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005886

RESUMO

Climate change is leading to advanced snowmelt date in alpine regions. Consequently, alpine plant species and ecosystems experience substantial changes due to prolonged phenological seasons, while the responses, mechanisms and implications remain widely unclear. In this 3-year study, we investigated the effects of advancing snowmelt on the phenology of alpine snowbed species. We related microclimatic drivers to species and ecosystem phenology using in situ monitoring and phenocams. We further used predictive modelling to determine whether early snowmelt sites could be used as sentinels for future conditions. Temperature during the snow-free period primarily influenced flowering phenology, followed by snowmelt timing. Salix herbacea and Gnaphalium supinum showed the most opportunistic phenology, while annual Euphrasia minima struggled to complete its phenology in short growing seasons. Phenological responses varied more between years than sites, indicating potential local long-term adaptations and suggesting these species' potential to track future earlier melting dates. Phenocams captured ecosystem-level phenology (start, peak and end of phenological season) but failed to explain species-level variance. Our findings highlight species-specific responses to advancing snowmelt, with snowbed species responding highly opportunistically to changes in snowmelt timings while following species-specific developmental programs. While species from surrounding grasslands may benefit from extended growing seasons, snowbed species may become outcompeted due to internal-clock-driven, non-opportunistic senescence, despite displaying a high level of phenological plasticity.

2.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557179

RESUMO

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Assuntos
Biodiversidade , Ecossistema , Humanos , Mar Mediterrâneo , Aquecimento Global , África Ocidental
3.
Nat Ecol Evol ; 8(6): 1109-1117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684739

RESUMO

Large pulses of tree mortality have ushered in a major reorganization of Europe's forest ecosystems. To initiate a robust next generation of trees, the species that are planted today need to be climatically suitable throughout the entire twenty-first century. Here we developed species distribution models for 69 European tree species based on occurrence data from 238,080 plot locations to investigate the option space for current forest management in Europe. We show that the average pool of tree species continuously suitable throughout the century is smaller than that under current and end-of-century climate conditions, creating a tree species bottleneck for current management. If the need for continuous climate suitability throughout the lifespan of a tree planted today is considered, climate change shrinks the tree species pool available to management by between 33% and 49% of its current values (40% and 54% of potential end-of-century values), under moderate (Representative Concentration Pathway 2.6) and severe (Representative Concentration Pathway 8.5) climate change, respectively. This bottleneck could have strong negative impacts on timber production, carbon storage and biodiversity conservation, as only 3.18, 3.53 and 2.56 species of high potential for providing these functions remain suitable throughout the century on average per square kilometre in Europe. Our results indicate that the option space for silviculture is narrowing substantially because of climate change and that an important adaptation strategy in forestry-creating mixed forests-might be curtailed by widespread losses of climatically suitable tree species.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Florestas , Árvores , Europa (Continente) , Árvores/crescimento & desenvolvimento , Biodiversidade , Agricultura Florestal , Modelos Biológicos
4.
J Biogeogr ; 51(1): 89-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38515765

RESUMO

The Anthropocene is characterized by a rapid pace of environmental change and is causing a multitude of biotic responses, including those that affect the spatial distribution of species. Lagged responses are frequent and species distributions and assemblages are consequently pushed into a disequilibrium state. How the characteristics of environmental change-for example, gradual 'press' disturbances such as rising temperatures due to climate change versus infrequent 'pulse' disturbances such as extreme events-affect the magnitude of responses and the relaxation times of biota has been insufficiently explored. It is also not well understood how widely used approaches to assess or project the responses of species to changing environmental conditions can deal with time lags. It, therefore, remains unclear to what extent time lags in species distributions are accounted for in biodiversity assessments, scenarios and models; this has ramifications for policymaking and conservation science alike. This perspective piece reflects on lagged species responses to environmental change and discusses the potential consequences for species distribution models (SDMs), the tools of choice in biodiversity modelling. We suggest ways to better account for time lags in calibrating these models and to reduce their leverage effects in projections for improved biodiversity science and policy.

5.
Syst Biol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554255

RESUMO

Why and how organismal lineages radiate is commonly studied through either assessing abiotic factors (biogeography, geomorphological processes, climate) or biotic factors (traits, interactions). Despite increasing awareness that both abiotic and biotic processes may have important joint effects on diversification dynamics, few attempts have been made to quantify the relative importance and timing of these factors, and their potentially interlinked direct and indirect effects, on lineage diversification. We here combine assessments of historical biogeography, geomorphology, climatic niche, vegetative and floral trait evolution to test whether these factors jointly, or in isolation, explain diversification dynamics of a Neotropical plant clade (Merianieae, Melastomataceae). After estimating ancestral areas and the changes in niche and trait disparity over time, we employ Phylogenetic Path Analyses as a synthesis tool to test eleven hypotheses on the individual direct and indirect effects of these factors on diversification rates. We find strongest support for interlinked effects of colonization of the uplifting Andes during the mid-Miocene and rapid abiotic climatic niche evolution in explaining a burst in diversification rate in Merianieae. Within Andean habitats, later increases in floral disparity allowed for the exploitation of wider pollination niches (i.e., shifts from bee to vertebrate pollinators), but did not affect diversification rates. Our approach of including both vegetative and floral trait evolution, rare in assessments of plant diversification in general, highlights that the evolution of woody habit and larger flowers preceded the colonization of the Andes, but was likely critical in enabling the rapid radiation in montane environments. Overall, and in concert with the idea that ecological opportunity is a key element of evolutionary radiations, our results suggest that a combination of rapid niche evolution and trait shifts were critical for the exploitation of newly available niche space in the Andes in the mid-Miocene. Further, our results emphasize the importance of incorporating both abiotic and biotic factors into the same analytical framework if we aim to quantify the relative and interlinked effects of these processes on diversification.

6.
Nat Commun ; 14(1): 2090, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045818

RESUMO

While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions.


Assuntos
Formigas , Ecossistema , Animais , Espécies Introduzidas , Incidência , Biodiversidade , Mamíferos
7.
Sustain Sci ; 18(2): 771-789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012996

RESUMO

The extent and impacts of biological invasions on biodiversity are largely shaped by an array of socio-economic and environmental factors, which exhibit high variation among countries. Yet, a global analysis of how these factors vary across countries is currently lacking. Here, we investigate how five broad, country-specific socio-economic and environmental indices (Governance, Trade, Environmental Performance, Lifestyle and Education, Innovation) explain country-level (1) established alien species (EAS) richness of eight taxonomic groups, and (2) proactive or reactive capacity to prevent and manage biological invasions and their impacts. These indices underpin many aspects of the invasion process, including the introduction, establishment, spread and management of alien species. They are also general enough to enable a global comparison across countries, and are therefore essential for defining future scenarios for biological invasions. Models including Trade, Governance, Lifestyle and Education, or a combination of these, best explained EAS richness across taxonomic groups and national proactive or reactive capacity. Historical (1996 or averaged over 1996-2015) levels of Governance and Trade better explained both EAS richness and the capacity of countries to manage invasions than more recent (2015) levels, revealing a historical legacy with important implications for the future of biological invasions. Using Governance and Trade to define a two-dimensional socio-economic space in which the position of a country captures its capacity to address issues of biological invasions, we identified four main clusters of countries in 2015. Most countries had an increase in Trade over the past 25 years, but trajectories were more geographically heterogeneous for Governance. Declines in levels of Governance are concerning as they may be responsible for larger levels of invasions in the future. By identifying the factors influencing EAS richness and the regions most susceptible to changes in these factors, our results provide novel insights to integrate biological invasions into scenarios of biodiversity change to better inform decision-making for policy and the management of biological invasions. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01166-3.

8.
Ecol Evol ; 13(4): e9985, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082319

RESUMO

Tropical species are considered to be more threatened by climate change than those of other world regions. This increased sensitivity to warming is thought to stem from the assumptions of low physiological capacity to withstand temperature fluctuations and already living near their limits of heat tolerance under current climatic conditions. For birds, despite thorough documentation of community-level rearrangements, such as biotic attrition and elevational shifts, there is no consistent evidence of direct physiological sensitivity to warming. In this review, we provide an integrative outlook into the physiological response of tropical birds to thermal variation and their capacity to cope with warming. In short, evidence from the literature suggests that the assumed physiological sensitivity to warming attributed to tropical biotas does not seem to be a fundamental characteristic of tropical birds. Tropical birds do possess the physiological capacities to deal with fluctuating temperatures, including high-elevation species, and are prepared to withstand elevated levels of heat, even those living in hot and arid environments. However, there are still many unaddressed points that hinder a more complete understanding of the response of tropical birds to warming, such as cooling capacities when exposed to combined gradients of heat and humidity, the response of montane species to heat, and thermoregulation under increased levels of microclimatic stress in disturbed ecosystems. Further research into how populations and species from different ecological contexts handle warming will increase our understanding of current and future community rearrangements in tropical birds.

9.
Sci Total Environ ; 861: 160576, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36462656

RESUMO

With ongoing global urbanization processes and consumption patterns increasingly recognized as key determinants of environmental change, a better understanding of the links between urban consumption and biodiversity loss is paramount. Here we quantify the global biodiversity footprint (BDF) of Vienna's (Austria) biomass consumption. We present a state-of-the-art product specific approach to (a) locate the production areas required for Vienna's consumption and map Vienna's BDF by (b) linking them with data taken from a previously published countryside Species-Area-Relationship (cSAR) model with a representation of land-use intensity. We found that food has the largest share in Vienna's BDF (58 %), followed by biomass for material applications (28 %) and bioenergy (13 %). The total BDF occurs predominantly within Austria and in its neighbouring countries, with ~20 % located outside Europe. Although the per capita biomass consumption in Vienna is above the global average, global and Viennese per capita BDFs are roughly equal, indicating that Vienna sources its products from high-yield regions with efficient production systems and comparatively low native species richness. We conclude that, among others, dietary changes offer a key leverage point for reducing the urban BDF, while expanding the use of biomass for material and energy use may increase the BDF and requires appropriate monitoring.


Assuntos
Biodiversidade , Urbanização , Cidades , Biomassa , Áustria
10.
Glob Ecol Biogeogr ; 32(7): 1046-1058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504871

RESUMO

Aim: Our knowledge of Pleistocene refugia and post-glacial recolonization routes of forest understorey plants is still very limited. The geographical ranges of these species are often rather narrow and show highly idiosyncratic, often fragmented patterns indicating either narrow and species-specific ecological tolerances or strong dispersal limitations. However, the relative roles of these factors are inherently difficult to disentangle. Location: Central and south-eastern Europe. Time period: 17,100 BP - present. Major taxa studied: Five understorey herbs of European beech forests: Aposeris foetida, Cardamine trifolia, Euphorbia carniolica, Hacquetia epipactis and Helleborus niger. Methods: We used spatio-temporally explicit modelling to reconstruct the post-glacial range dynamics of the five forest understorey herbs. We varied niche requirements, demographic rates and dispersal abilities across plausible ranges and simulated the spread of species from potential Pleistocene refugia identified by phylogeographical analyses. Then we identified the parameter settings allowing for the most accurate reconstruction of their current geographical ranges. Results: We found a largely homogenous pattern of optimal parameter settings among species. Broad ecological niches had to be combined with very low but non-zero rates of long-distance dispersal via chance events and low rates of seed dispersal over moderate distances by standard dispersal vectors. However, long-distance dispersal events, although rare, led to high variation among replicated simulation runs. Main conclusions: Small and fragmented ranges of many forest understorey species are best explained by a combination of broad ecological niches and rare medium- and long-distance dispersal events. Stochasticity is thus an important determinant of current species ranges, explaining the idiosyncratic distribution patterns of the study species despite strong similarities in refugia, ecological tolerances and dispersal abilities.

11.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504954

RESUMO

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

12.
Glob Ecol Biogeogr ; 32(9): 1535-1548, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38505836

RESUMO

Aim: The breadth of ecological niches and dispersal abilities have long been discussed as important determinants of species' range sizes. However, studies directly comparing the relative effects of both factors are rare, taxonomically biased and revealed inconsistent results. Location: Europe. Time Period: Cenozoic. Major Taxa: Butterflies, Lepidoptera. Methods: We relate climate, diet and habitat niche breadth and two indicators of dispersal ability, wingspan and a dispersal tendency index, to the global range size of 369 European-centred butterfly species. The relative effects of these five predictors and their variation across the butterfly phylogeny were assessed by means of phylogenetic generalized least squares models and phylogenetically weighted regressions respectively. Results: Climate niche breadth was the most important single predictor, followed by habitat and diet niche breadth, while dispersal tendency and wingspan showed no relation to species' range size. All predictors together explained 59% of the variation in butterfly range size. However, the effects of each predictor varied considerably across families and genera. Main Conclusions: Range sizes of European-centred butterflies are strongly correlated with ecological niche breadth but apparently independent of dispersal ability. The magnitude of range size-niche breadth relationships is not stationary across the phylogeny and is often negatively correlated across the different dimensions of the ecological niche. This variation limits the generalizability of range size-trait relationships across broad taxonomic groups.

13.
J Biogeogr ; 49(10): 1739-1752, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36245965

RESUMO

Aim: Species' ecological traits influence their spatial genetic patterns. Bedrock preference strongly shapes the phylogeography of alpine plants, but its interactions with other ecological traits have rarely been disentangled. Here, we explore whether dispersal ability and degree of habitat specialization account for divergent postglacial expansion patterns of high-elevation plants in spite of similar bedrock preference. Location: The Pyrenees, southwestern Europe. Taxon: Cirsium glabrum (Asteraceae), Salix pyrenaica (Salicaceae) and Silene borderei (Caryophyllaceae). Methods: Phylogenetic, genetic structure and demographic modelling analyses based on restriction-site-associated DNA sequencing (RADseq) data from a range-wide populational sampling were conducted. Occurrence data and environmental variables were used to construct species distribution models, which were projected under current and Last Glacial Maximum conditions, and were combined with RADseq data to reconstruct the postglacial history of the study species. The degree of habitat specialization of each species was estimated based on the plant communities within which they occur, and their climatic niche breadth. Results: Salix pyrenaica, which occupies a broad range of habitats, shows a high level of range filling, a blurred genetic structure and an admixture cline between the two main genetic groups, congruent with rapid postglacial expansion. The microsite specialists C. glabrum and S. borderei exhibit a strong genetic structure and low levels of range filling, indicative of slow postglacial expansion. The good disperser C. glabrum shows higher levels of admixture between genetic groups and weaker population differentiation than the poor disperser S. borderei. Main Conclusions: Factors other than bedrock preference have a strong impact on the postglacial range dynamics of high-elevation species. Habitat specialization plays an important role, allowing species occupying a broad range of habitats to more rapidly expand their ranges after environmental change. The effect of dispersal ability is lower than expected for the study species.

14.
Sci Data ; 9(1): 631, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261458

RESUMO

Vegetation-plot resurvey data are a main source of information on terrestrial biodiversity change, with records reaching back more than one century. Although more and more data from re-sampled plots have been published, there is not yet a comprehensive open-access dataset available for analysis. Here, we compiled and harmonised vegetation-plot resurvey data from Germany covering almost 100 years. We show the distribution of the plot data in space, time and across habitat types of the European Nature Information System (EUNIS). In addition, we include metadata on geographic location, plot size and vegetation structure. The data allow temporal biodiversity change to be assessed at the community scale, reaching back further into the past than most comparable data yet available. They also enable tracking changes in the incidence and distribution of individual species across Germany. In summary, the data come at a level of detail that holds promise for broadening our understanding of the mechanisms and drivers behind plant diversity change over the last century.


Assuntos
Biodiversidade , Ecossistema , Alemanha , Plantas
15.
Nature ; 611(7936): 512-518, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261519

RESUMO

Long-term analyses of biodiversity data highlight a 'biodiversity conservation paradox': biological communities show substantial species turnover over the past century1,2, but changes in species richness are marginal1,3-5. Most studies, however, have focused only on the incidence of species, and have not considered changes in local abundance. Here we asked whether analysing changes in the cover of plant species could reveal previously unrecognized patterns of biodiversity change and provide insights into the underlying mechanisms. We compiled and analysed a dataset of 7,738 permanent and semi-permanent vegetation plots from Germany that were surveyed between 2 and 54 times from 1927 to 2020, in total comprising 1,794 species of vascular plants. We found that decrements in cover, averaged across all species and plots, occurred more often than increments; that the number of species that decreased in cover was higher than the number of species that increased; and that decrements were more equally distributed among losers than were gains among winners. Null model simulations confirmed that these trends do not emerge by chance, but are the consequence of species-specific negative effects of environmental changes. In the long run, these trends might result in substantial losses of species at both local and regional scales. Summarizing the changes by decade shows that the inequality in the mean change in species cover of losers and winners diverged as early as the 1960s. We conclude that changes in species cover in communities represent an important but understudied dimension of biodiversity change that should more routinely be considered in time-series analyses.


Assuntos
Biodiversidade , Plantas , Alemanha , Plantas/classificação , Especificidade da Espécie , Fatores de Tempo , Conjuntos de Dados como Assunto
16.
Nat Ecol Evol ; 6(11): 1723-1732, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253544

RESUMO

The redistribution of alien species across the globe accelerated with the start of European colonialism. European powers were responsible for the deliberate and accidental transportation, introduction and establishment of alien species throughout their occupied territories and the metropolitan state. Here, we show that these activities left a lasting imprint on the global distribution of alien plants. Specifically, we investigated how four European empires (British, Spanish, Portuguese and Dutch) structured current alien floras worldwide. We found that compositional similarity is higher than expected among regions that once were occupied by the same empire. Further, we provide strong evidence that floristic similarity between regions occupied by the same empire increases with the time a region was occupied. Network analysis suggests that historically more economically or strategically important regions have more similar alien floras across regions occupied by an empire. Overall, we find that European colonial history is still detectable in alien floras worldwide.


Assuntos
Colonialismo , Espécies Introduzidas , Plantas
17.
Nat Plants ; 8(8): 906-914, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953709

RESUMO

Darwin's naturalization hypothesis predicts successful alien invaders to be distantly related to native species, whereas his pre-adaptation hypothesis predicts the opposite. It has been suggested that depending on the invasion stage (that is, introduction, naturalization and invasiveness), both hypotheses, now known as Darwin's naturalization conundrum, could hold true. We tested this by analysing whether the likelihood of introduction for cultivation, as well as the subsequent stages of naturalization and spread (that is, becoming invasive) of species alien to Southern Africa are correlated with their phylogenetic distance to the native flora of this region. Although species are more likely to be introduced for cultivation if they are distantly related to the native flora, the probability of subsequent naturalization was higher for species closely related to the native flora. Furthermore, the probability of becoming invasive was higher for naturalized species distantly related to the native flora. These results were consistent across three different metrics of phylogenetic distance. Our study reveals that the relationship between phylogenetic distance to the native flora and the success of an alien species changes from one invasion stage to the other.


Assuntos
Ecossistema , Espécies Introduzidas , Adaptação Fisiológica , Filogenia , Plantas
19.
Nat Commun ; 13(1): 615, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105884

RESUMO

Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified countryside species-area model to compute a global account of the impending biodiversity loss caused by current land-use patterns, explicitly addressing the role of land-use intensity based on two sets of intensity indicators. We find that land-use entails the loss of ~15% of terrestrial vertebrate species from the average 5 × 5 arcmin-landscape outside remaining wilderness areas and ~14% of their average native area-of-habitat, with a risk of global extinction for 556 individual species. Given the large fraction of global land currently used under low land-use intensity, we find its contribution to biodiversity loss to be substantial (~25%). While both sets of intensity indicators yield similar global average results, we find regional differences between them and discuss data gaps. Our results support calls for improved sustainable intensification strategies and demand-side actions to reduce trade-offs between food security and biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Vertebrados , Agricultura , Animais , Ecossistema
20.
New Phytol ; 229(5): 2998-3008, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078849

RESUMO

Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.


Assuntos
Ecossistema , Plantas , Geografia , Espécies Introduzidas , Filogenia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...