Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Vet Res ; 52(1): 53, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823911

RESUMO

Trypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.

2.
Trop Med Int Health ; 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33860616

RESUMO

OBJECTIVE: To analyze the ecological and social factors involved in infestation of houses by T. dimidiata in a rural locality of Veracruz, Mexico, where active transmission of the parasite is occurring. METHODS: A survey was applied to the households of the locality to obtain sociodemographic data. In parallel, T. dimidiata insects were collected during one year through community participation. Using PCR, the insects were genotyped, their infection status was assessed, and parasite genotypes infecting the insects were identified. The vector's blood meal sources were identified using a polymerase-heteroduplex chain reaction assay. RESULTS: Seasonal variations in the patterns of infestation by T. dimidiata were observed. An overall infestation rate of 19.46%, a colonization index of 9.09%, a dispersion rate of 22.15%, and a synanthropy index of 80.6% were found. The collected insects were identified as ITS-2 group 2 insects, and a natural infection with T. cruzi of 54.35% was found. TcI and no-TcI genotypes of T. cruzi were found in infected insects. Factors such as rain (P = 0.0006) and temperature (P<0.0001) were associated with infestation. Analysis of the blood meal sources indicated frequent feeding upon humans and mice. Furthermore, house materials and peridomiciles were found to play an important role in the dynamics of infestation. CONCLUSIONS: The contribution of this study is important for understanding the epidemiology of Chagas disease in rural areas of the state of Veracruz and will help to the establishment of an entomological surveillance system and implementation of prevention and control measures in accordance with the reality of the area.

3.
Pathogens ; 10(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669197

RESUMO

Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America.

4.
Viruses ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540576

RESUMO

Infections with SARS-CoV-2 can progress toward multiple clinical outcomes, and the identification of factors associated with disease severity would represent a major advance to guide care and improve prognosis. We tested for associations between SARS-CoV-2 genomic variants from an international cohort of 2508 patients and mortality rates. Findings were validated in a second cohort. Phylogenetic analysis of SARS-CoV-2 genome sequences revealed four well-resolved clades which had significantly different mortality rates, even after adjusting for patient demographic and geographic characteristics. We further identified ten single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 genome that were associated with patient mortality. Three SNPs remained associated with mortality in a generalized linear model (GLM) that also included patient age, sex, geographic region, and month of sample collection. Multiple SNPs were confirmed in the validation cohort. These SNPs represent targets to assess the mechanisms underlying COVID-19 disease severity and warrant straightforward validation in functional studies.


Assuntos
/mortalidade , Genoma Viral , Polimorfismo de Nucleotídeo Único , /genética , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
5.
Expert Rev Vaccines ; : 1-16, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33612044

RESUMO

Introduction: Three decades of evidence have demonstrated that plants are an affordable platform for biopharmaceutical production and delivery. For instance, several plant-made recombinant proteins have been approved for commercialization under good manufacturing practice (GMP). Thus far, plant-based vaccine prototypes have been evaluated at pre- and clinical levels. Particularly, plant-made vaccines against parasitic diseases, such as malaria, cysticercosis, and toxoplasmosis have been successfully produced and orally delivered with promising outcomes in terms of immunogenicity and protection. The experience on several approaches and technical strategies over 30 years accounts for their potential low-cost, high scalability, and easy administration.Areas covered: This platform is an open technology to fight against Chagas disease, one of the most important neglected tropical diseases worldwide.Expert opinion: This review provides a perspective for the potential use of plants as a production platform and delivery system of Trypanosoma cruzi recombinant antigens, analyzing the advantages and limitations with respect to plant-made vaccines produced for other parasitic diseases. Plant-made vaccines are envisioned to fight against Chagas disease and other neglected tropical diseases in those countries suffering endemic prevalence.

6.
Acta Parasitol ; 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564985

RESUMO

PURPOSE: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a vector-borne disease with a major disease burden in the Americas, with over 6 million cases. There are about 200,000 cases in Ecuador, but the epidemiology of the disease is poorly understood, particularly in the Amazon region, making surveillance and control challenging. METHODS: We determined here the seroprevalence of T. cruzi antibodies in a cohort of 516 schoolchildren aged 5-15 years from Chontapunta parish, in the Napo province, Ecuador, using ELISA and indirect hemaglutination tests. RESULTS: We detected a seroprevalence of 0.77% (95% confidence interval 0.31-1.97%), with some significant variation among the three studied communities. CONCLUSION: These data provide evidence of the ongoing transmission of T. cruzi in this area, and support the need to strengthen epidemiological surveillance and patient care.

7.
Evol Appl ; 13(10): 2663-2672, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294015

RESUMO

Introduction: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in the Americas, and existing drugs have severe limitations. In this context, a vaccine would be an attractive alternative for disease control. One of the difficulties in developing an effective vaccine lies in the high genetic diversity of T. cruzi. In this study, we evaluated the level of sequence diversity of the leading vaccine candidate Tc24 in multiple parasite strains. Methods and Results: We quantified its level of polymorphism within and between T. cruzi discrete typing units (DTUs) and how this potential polymorphism is structured by different selective pressures. We observed a low level of polymorphism of Tc24 protein, weakly associated with parasite DTUs, but not with the geographic origin of the strains. In particular, Tc24 was under strong purifying selection pressure and predicted CD8+ T-cell epitopes were mostly conserved. Tc24 strong conservation may be associated with structural/functional constrains to preserve EF hand domains and their calcium-binding loops, and Tc24 is likely important for the parasite fitness. Discussion: Together, these results show that a vaccine based on Tc24 is likely to be effective against a wide diversity of parasite strains across the American continent, and further development of this vaccine candidate should be a high priority.

8.
Public Health Rev ; 41(1): 24, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33292766

RESUMO

A consequence of the late awareness of Chagas disease in North America is that many early studies were never published in peer-reviewed journals and are not easily accessible for inclusion in systematic reviews. We reviewed data from the state of Guanajuato, Mexico, as an illustration. Three population-based surveys have been performed between 1991 and 2002 and were never fully published. Systematic reviews should recognize this publication bias.

9.
PLoS Negl Trop Dis ; 14(12): e0008932, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332357

RESUMO

BACKGROUND: Chagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance. METHODOLOGY/PRINCIPAL FINDINGS: We used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs. CONCLUSIONS/SIGNIFICANCE: These observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests.


Assuntos
Doença de Chagas/veterinária , Éxons/genética , Variação Genética , Trypanosoma cruzi/genética , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Estudos de Coortes , Cães , Genótipo , Humanos , Louisiana/epidemiologia , Filogenia , Testes Sorológicos/veterinária , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/fisiologia , Zoonoses
10.
Genome ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33086026

RESUMO

Chagas disease is a zoonotic, parasitic, vector-borne neglected tropical disease that affects the lives of over 6 million people throughout the Americas. Trypanosoma cruzi, the causative agent, presents extensive genetic diversity. Here we report the genome sequence of reference strain SC43cl1, a hybrid strain belonging to the TcV discrete typing unit (DTU). The assembled diploid genome was 79 Mbp in size, divided into 1,236 contigs with an average coverage reaching x180. There was extensive synteny of SC43cl1 genome with closely related TcV and TcVI genomes, with limited sequence rearrangements. TcVI genomes included several expansions not present in TcV strains. Comparative analysis of both nuclear and kinetoplast sequences clearly separated TcV from TcVI strains, which strongly supports the current DTU classification.

11.
Mol Ecol ; 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749727

RESUMO

Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector-borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next-generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.

12.
Reprod Health ; 17(1): 128, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831069

RESUMO

BACKGROUND: Retrospective observational studies suggest that transmission of Trypanosoma cruzi does not occur in treated women when pregnant later in life. The level of parasitemia is a known risk factor for congenital transmission. Benznidazole (BZN) is the drug of choice for preconceptional treatment to reduce parasitic load. The fear of treatment-related side effects limits the implementation of the Argentine guideline recommending BZN 60d/300 mg (or equivalent) treatment of T. cruzi seropositive women during the postpartum period to prevent transmission in a future pregnancy. A short and low dose BZN treatment might reduce major side effects and increase compliance, but its efficacy to reduce T. cruzi parasitic load compared to the standard 60d/300 mg course is not yet established. Clinical trials testing alternative BZN courses among women of reproductive age are urgently needed. METHODS AND DESIGN: We are proposing to perform a double-blinded, non-inferiority randomized controlled trial comparing a short low dose 30-day treatment with BZN 150 mg/day (30d/150 mg) vs. BZN 60d/300 mg. We will recruit not previously treated T. cruzi seropositive women with a live birth during the postpartum period in Argentina, randomize them at 6 months postpartum, and follow them up with the following specific aims: Specific aim 1: to measure the effect of BZN 30d/150 mg compared to 60d/300 mg preconceptional treatment on parasitic load measured by the frequency of positive Polymerase Chain Reaction (PCR) (primary outcome) and by real-time quantitative PCR (qPCR), immediately and 10 months after treatment. Specific aim 2: to measure the frequency of serious adverse events and/or any adverse event leading to treatment interruption. TRIAL REGISTRATION: ClinicalTrials.gov . Identifier: NCT03672487 . Registered 14 September 2018.

13.
Pathogens ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709055

RESUMO

The ongoing SARS-CoV-2 pandemic has triggered multiple efforts for serological tests and vaccine development. Most of these tests and vaccines are based on the Spike glycoprotein (S) or the Nucleocapsid (N) viral protein. Conservation of these antigens among viral strains is critical to ensure optimum diagnostic test performance and broad protective efficacy, respectively. We assessed N and S antigen diversity from 17,853 SARS-CoV-2 genome sequences and evaluated selection pressure. Up to 6-7 incipient phylogenetic clades were identified for both antigens, confirming early variants of the S antigen and identifying new ones. Significant diversifying selection was detected at multiple sites for both antigens. Some sequence variants have already spread in multiple regions, in spite of their low frequency. In conclusion, the N and S antigens of SARS-CoV-2 are well-conserved antigens, but new clades are emerging and may need to be included in future diagnostic and vaccine formulations.

14.
Vaccine ; 38(29): 4584-4591, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32417142

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi is one of the most important neglected parasitic diseases in the Americas. Vaccines represent an attractive complementary strategy for the control of T. cruzi infection and pre-clinical studies in mice demonstrated that trypomastigote surface antigen (TSA-1) and the flagellar calcium-binding (Tc24) parasite antigens are promising candidates for vaccine development. We performed here the first evaluation of the safety and immunogenicity of two recombinant vaccine antigens (named TSA1-C4 and Tc24-C4) in naïve non-human primates. Three rhesus macaques received 3 doses of each recombinant protein, formulated with E6020 (Eisai Co., Ltd.), a novel Toll-like receptor-4 agonist, in a stable emulsion. All parameters from blood chemistry and blood cell counts were stable over the course of the study and unaffected by the vaccine. A specific IgG response against both antigens was detectable after the first vaccine dose, and increased with the second dose. After three vaccine doses, stimulation of PBMCs with a peptide pool derived from TSA1-C4 resulted in the induction of TSA1-C4-specific TNFα-, IL-2- and IFNγ-producing CD4+ in one or two animals while stimulation with a peptide pool derived from Tc24-C4 only activated IFNγ-producing CD4+T cells in one animal. In two animals there was also activation of TSA1-C4-specific IL2-producing CD8+ T cells. This is the first report of the immunogenicity of T. cruzi-derived recombinant antigens formulated as an emulsion with a TLR4 agonist in a non-human primate model. Our results strongly support the need for further evaluation of the preventive efficacy of this type of vaccine in non-human primates and explore the effect of the vaccine in a therapeutic model of naturally-infected Chagasic non-human primates, which would strengthen the rationale for the clinical development as a human vaccine against Chagas disease.

15.
Acta Parasitol ; 65(3): 661-668, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32300949

RESUMO

PURPOSE: The state of Veracruz, Mexico, is a well-recognized endemic region for Chagas disease, but congenital transmission has not been extensively studied. We estimated here the prevalence and the risk of congenital transmission of Trypanosoma cruzi in pregnant women from 27 municipalities of central Veracruz. METHODS: 528 sera from pregnant women were analyzed by ELISA and IFA assays for the detection of IgG antibodies against T. cruzi. RESULTS: The presence of anti-T. cruzi antibodies was identified in women from 17 municipalities, obtaining an overall seroprevalence of 17.0%. A higher seropositivity was observed in the municipalities of Orizaba (25.2%), Nogales (13.6%), and Río Blanco (10.5%). The results suggest that there is a high risk of congenital transmission of T. cruzi in the region. CONCLUSION: There are currently limited actions for the surveillance and control of congenital transmission of Chagas disease in Veracruz.

16.
Braz. j. infect. dis ; 24(1): 85-88, Feb. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1089325

RESUMO

ABSTRACT The antigenic potential of seven immunogenic peptides of the dengue virus was evaluated in the sera of patients with dengue confirmed by IgM/IgG serology. Antibodies IgM and IgG against dengue virus peptides were analyzed by ELISA in 31 dengue sero-positive and 20 sero-negative patients. The P5 peptide showed significant IgG immunoreactivity mostly in the sera of patients with dengue without warning signs in comparison with patients with dengue with warning signs, correlating with mild disease. This finding suggests that the low antibody response against P5 epitope could be a risk factor for higher susceptibility to dengue virus infection with warning signs, and that P5 could be a potential antigen for vaccine development.


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Peptídeos/imunologia , Proteínas do Envelope Viral/imunologia , Vírus da Dengue/imunologia , Vacinas contra Dengue , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ensaio de Imunoadsorção Enzimática , Estatísticas não Paramétricas , Dengue/imunologia , Dengue/prevenção & controle , Formação de Anticorpos , Antígenos Virais/imunologia
17.
Braz J Infect Dis ; 24(1): 85-88, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31760037

RESUMO

The antigenic potential of seven immunogenic peptides of the dengue virus was evaluated in the sera of patients with dengue confirmed by IgM/IgG serology. Antibodies IgM and IgG against dengue virus peptides were analyzed by ELISA in 31 dengue sero-positive and 20 sero-negative patients. The P5 peptide showed significant IgG immunoreactivity mostly in the sera of patients with dengue without warning signs in comparison with patients with dengue with warning signs, correlating with mild disease. This finding suggests that the low antibody response against P5 epitope could be a risk factor for higher susceptibility to dengue virus infection with warning signs, and that P5 could be a potential antigen for vaccine development.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Dengue , Vírus da Dengue/imunologia , Epitopos/imunologia , Peptídeos/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Idoso , Formação de Anticorpos , Antígenos Virais/imunologia , Criança , Dengue/imunologia , Dengue/prevenção & controle , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Adulto Jovem
18.
J Microbiol Immunol Infect ; 53(4): 622-633, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30709717

RESUMO

BACKGROUND/PURPOSE: The parasitic protozoa Trypanosoma cruzi, is widely distributed throughout the Americas. We explored the nature of T. cruzi infection in small rodents from New Orleans (LA, USA), an enzootic region of the parasite in North America. METHODS: We characterized the full complement of discrete typing units (DTUs) in rodent hosts through next-generation metabarcoding, as conventional PCR and Sanger sequencing approaches only detect the dominant genotype in biological samples. We assayed DTU diversity in tissue samples from 6 T. cruzi PCR positive rodents. The intergenic region of the mini-exon gene was amplified and sequenced on a MiSeq platform. A total of 141 sequences were aligned using Muscle, and TCS networks were constructed to identify DTUs in the samples. RESULTS: We detected distinct and varying assemblages of DTUs in the rodent hosts. Highly diverse DTU assemblages were detected, with 6-32 haplotypes recovered per individual, spanning multiple DTUs (TcI,TcII, TcIV, TcV and TcVI). Haplotypes varied in frequencies from 82% to less than 0.1%. DTU composition varied according to the tissue analyzed. Rural and urban rodents carried similarly diverse DTU assemblages, though urban rodent species tended to harbor more haplotypes than their sylvatic counterparts. CONCLUSION: Our results affirm that mammalian hosts can concurrently harbor a diverse complement of parasites, and indicate that there is greater diversity of T. cruzi DTUs present in North America than previously thought. Further investigation is warranted to understand the role of commensal rodents as a reservoir for T. cruzi in sylvatic and peridomestic environments.

19.
Parasit Vectors ; 12(1): 572, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783778

RESUMO

BACKGROUND: In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little effort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more effective control strategies. We identified the blood meals of a large sample of T. dimidiata bugs collected in different ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. METHODS: A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identification, we used a molecular assay based on cloning and sequencing following PCR amplification with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. RESULTS: Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical difference between bugs from the villages or from sylvatic ecotopes. Sixteen vertebrate species including domestic, synanthropic and sylvatic animals, were identified as blood meal sources for T. dimidiata. Human, dog and cow were the three main species identified, in bugs collected in the villages as well as in sylvatic ecotopes. Importantly, dog was highlighted as the main blood meal source after human. Dog was also the most frequently identified animal together with human within single bugs, and tended to be associated with the infection of the bugs. CONCLUSIONS: Dog, human and cow were identified as the main mammals involved in the connection of sylvatic and domestic transmission cycles in the Yucatán Peninsula, Mexico. Dog appeared as the most important animal in the transmission pathway of T. cruzi to humans, but other domestic and synanthropic animals, which most were previously reported as important hosts of T. cruzi in the region, were evidenced and should be taken into account as part of integrated control strategies aimed at disrupting parasite transmission.


Assuntos
Sangue , Doença de Chagas/transmissão , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Animais , Bovinos , Cães , Feminino , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia , Masculino , México , Triatoma/fisiologia
20.
PLoS Negl Trop Dis ; 13(12): e0007902, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834879

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a Neglected Tropical Disease affecting 8 million people in the Americas. Triatomine hematophagous vectors feed on a high diversity of vertebrate species that can be reservoirs or dead-end hosts, such as avian species refractory to T. cruzi. To understand its transmission dynamics in synanthropic and domesticated species living within villages is essential to quantify disease risk and assess the potential of zooprophylaxis. We developed a SI model of T. cruzi transmission in a multi-host community where vector reproduction and parasite transmission depend on a triatomine blood-feeding rate accounting for vector host preferences and interference while feeding. The model was parameterized to describe T. cruzi transmission in villages of the Yucatan peninsula, Mexico, using the information about Triatoma dimidiata vectors and host populations accumulated over the past 15 years. Extensive analyses of the model showed that dogs are key reservoirs and contributors to human infection, as compared to synanthropic rodents and cats, while chickens or other domesticated avian hosts dilute T. cruzi transmission despite increasing vector abundance. In this context, reducing the number of dogs or increasing avian hosts abundance decreases incidence in humans by up to 56% and 39%, respectively, while combining such changes reduces incidence by 71%. Although such effects are only reached over >10-years periods, they represent important considerations to be included in the design of cost-effective Integrated Vector Management. The concomitant reduction in T. cruzi vector prevalence estimated by simulating these zooprophylactic interventions could indeed complement the removal of colonies from the peridomiciles or the use of insect screens that lower vector indoor abundance by ~60% and ~80%. These new findings reinforce the idea that education and community empowerment to reduce basic risk factors is a cornerstone to reach and sustain the key objective of interrupting Chagas disease intra-domiciliary transmission.


Assuntos
Animais Domésticos/parasitologia , Animais Selvagens/parasitologia , Doença de Chagas/transmissão , Reservatórios de Doenças/parasitologia , Transmissão de Doença Infecciosa , Insetos Vetores/crescimento & desenvolvimento , Triatoma/crescimento & desenvolvimento , Animais , Doença de Chagas/veterinária , Simulação por Computador , Humanos , Incidência , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...