Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(36): 14377-14388, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044741

RESUMO

In this fundamental solid-state chemistry study, two sample series were investigated in depth: iron(III)-doped hydroxyapatite (HA) compounds obtained from a co-sintering process of hematite and pure HA under air and iron(III)-doped HA compounds obtained from a co-sintering process from iron(II) acetate and pure HA under an argon atmosphere. X-ray diffraction, UV-visible, Fourier transform infrared, 1H and 31P NMR, electron paramagnetic resonance (EPR,) and Mössbauer spectroscopy methods were coupled to unravel the Fe valence states, the interactions with other anionic species (OH- and PO43-), and finally the complex local environments in hexagonal channels in both the series. In particular, we highlighted the associated mechanism to ensure electroneutrality with a focus on deprotonation versus calcium substitution. By diverging mechanisms, Fe3+ and Fe2+ ions were found to be located in different coordinated sites: 4(+1) coordinated site for Fe3+ and 2(+3) coordinated site for Fe2+ and clearly associated with very different Mössbauer and EPR signatures as various absorption bands (leading to different sample colors).


Assuntos
Durapatita , Compostos Férricos , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/química , Modelos Moleculares , Espectroscopia de Mossbauer
2.
ACS Appl Mater Interfaces ; 14(2): 3130-3142, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981916

RESUMO

Magnetic nanoparticles are central to the development of efficient hyperthermia treatments, magnetic drug carriers, and multimodal contrast agents. While the magnetic properties of small crystalline iron oxide nanoparticles are well understood, the superparamagnetic size limit constitutes a significant barrier for further size reduction. Iron (oxy)hydroxide phases, albeit very common in the natural world, are far less studied, generally due to their poor crystallinity. Templating ultrasmall nanoparticles on substrates such as graphene is a promising method to prevent aggregation, typically an issue for both material characterization and applications. We generate ultrasmall nanoparticles, directly on the carbon framework by the reaction of a graphenide potassium solution, charged graphene flakes, with iron(II) salts. After mild water oxidation, the obtained composite material consists of ultrasmall potassium ferrite nanoparticles bound to the graphene nanoflakes. Magnetic properties as evidenced by magnetometry and X-ray magnetic circular dichroism, with open magnetic hysteresis loops near room temperature, are widely different from classical ultrasmall superparamagnetic iron oxide nanoparticles. The large value obtained for the effective magnetic anisotropy energy density Keff accounts for the presence of magnetic ordering at rather high temperatures. The synthesis of ultrasmall potassium ferrite nanoparticles under such mild conditions is remarkable given the harsh conditions used for the classical syntheses of bulk potassium ferrites. Moreover, the potassium incorporation in the crystal lattice occurs in the presence of potassium cations under mild conditions. A transfer of this method to related reactions would be of great interest, which underlines the synthetic value of this study. These findings also give another view on the previously reported electrocatalytic properties of these nanocomposite materials, especially for the sought-after oxygen reduction/evolution reaction. Finally, their longitudinal and transverse proton NMR relaxivities when dispersed in water were assessed at 37 °C under a magnetic field of 1.41 T, allowing potential applications in biological imaging.

3.
ACS Appl Mater Interfaces ; 13(36): 42682-42692, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478252

RESUMO

Sodium-rich iron hexacyanoferrates were prepared by coprecipitation, hydrothermal route, and under reflux, with or without dehydration. They were obtained with different structures described in cubic, orthorhombic, or rhombohedral symmetry, with variable compositions in sodium, water, and cationic vacancies and with a variety of morphologies. This series of sodium-rich Prussian blue analogues allowed addressing the relationship between synthesis conditions, composition, structure, morphology, and electrochemical properties in Na-ion batteries. A new orthorhombic phase with the Na1.8Fe2(CN)6·0.7H2O composition synthesized by an hydrothermal route at 140 °C is reported for the first time, whereas a phase of Na2Fe2(CN)6·2H2O composition obtained under reflux, previously described with a monoclinic structure, shows in fact a rhombohedral structure.

4.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068875

RESUMO

Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.


Assuntos
Aterosclerose/patologia , Emulsões , Nanopartículas de Magnetita/administração & dosagem , Imagem Molecular/métodos , Anticorpos de Cadeia Única/imunologia , Nanomedicina Teranóstica/métodos , Animais , Aterosclerose/imunologia , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Polietilenoglicóis
5.
ACS Appl Mater Interfaces ; 12(41): 46972-46980, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32976715

RESUMO

ZnO/MoO3 powder mixture exhibits a huge photochromic effect in comparison with the corresponding single oxides. The coloring efficiency of such combined material after UV-light irradiation was studied in terms of intensity, kinetics, and ZnO/MoO3 powder ratio. Additionally, the incidence of the pretreatment step of the ZnO and MoO3 powders under different atmospheres (air, Ar or Ar/H2 flow) was analyzed. The huge photochromic effect discovered herein was interpreted as the creation of "self-closed Schottky barrier" at the solid/solid interfaces between the two oxides, associated with the full redox reaction which can be pictured by the equation ZnO1-ε + MoO3 → ZnO + MoO3-ε. Remarkable optical contrast between virgin and color states as well as self-bleaching in dark allowing the reversibility of the photochromism is emphasized. From this first discovery, deeper characterization of the self-bleaching process shows that the photochromic mechanism is complex with a bleaching efficiency (possibility to come back to the virgin material optical properties without any deterioration) and a bleaching kinetics, which are both dependent on the coloring irradiation time. This demonstrates that the oxygen exchange through the Schottky interface proceeds in at least two convoluted steps: an anionic surface exchange allowing a reversibility of the redox reaction followed by bulk diffusion of the exchanged anions which are then definitively trapped. An emergent "negative photochromism effect" (i.e., photochromism associated with a self-bleaching instead of a darkening under irradiation) is observed after a long irradiation time.

6.
Phys Chem Chem Phys ; 22(12): 6626-6637, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159166

RESUMO

The spin crossover (SCO) efficiency of [57Fe(bpz)2(phen)] (where bpz = bis(pyrazol-1-yl)borohydride and phen = 9,10-phenantroline) molecules deposited on gold substrates was investigated by means of synchrotron Mössbauer spectroscopy. The spin transition was driven thermally, or light induced via the LIESST (light induced excited spin-state trapping) effect. Both sets of measurements show that, once deposited on a gold substrate, the efficiency of the SCO mechanism is modified with respect to molecules in the bulk phase. A correlation in the distribution of hyperfine parameters in the sublimated films, not evidenced so far in the bulk phase, is reported. This translates into geometrical distortions of the first coordination sphere of the iron atom that seem to correlate with the decreased spin conversion. The work reported clearly shows the potentiality of synchrotron Mössbauer spectroscopy for the characterization of nanostructured Fe-based SCO systems, thus resulting as a key tool in view of their applications in innovative nanoscale devices.

7.
Inorg Chem ; 59(1): 678-686, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31854984

RESUMO

A low content of chromium (≤5 mol %) has been incorporated into a SnO2 cassiterite by a coprecipitation route in a basic medium, followed by an annealing step under an O2 flow at T = 800 °C and T = 1000 °C. Accurate UV-vis and EPR spectroscopy investigations show the coexistence of isolated Cr4+ and Cr3+ ions as well as ferromagnetic Cr4+-Cr3+ and antiferromagnetic Cr3+-Cr3+ interactions. The strong purple hue is related to the isolated Cr4+ ions stabilized in a distorted octahedral site. This is thanks to the second-order Jahn-Teller (SOJT) effect with a crystal field splitting 10Dq value around 2.4 eV, whereas the 10Dq value is around 2 eV for isotropic Cr3+ ions, partially substituted for Sn4+ ions in cassiterite. Just after the coprecipitation process, only Cr3+ species are stabilized in this rutile network with a poor crystallinity. The isolated Cr4+ content remains high after annealing at 800 °C for 2 days especially for the highest Cr rate (2 and 5 mol %), leading to a darker purple color, but unfortunately the Cr3+ content also increases for a higher Cr concentration. A lighter purple hue can be reached after calcination at a higher temperature (T = 1000 °C) for a shorter time (4 h) but with a lower Cr content to avoid Cr clusters. This is due to stabilizing a high content of isolated Cr4+ species and limiting the Cr4+-Cr3+ ferromagnetic interactions, which are optimal for a 2% Cr content and also cause the color to darken. The key roles of the Cr4+ rate and the Cr4+-Cr3+ clusters create local defects whose concentration strongly varies with a total Cr content, which have then been demonstrated to strongly influence the optical and magnetic properties.

8.
Nanomaterials (Basel) ; 9(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683876

RESUMO

Tungsten trioxide (WO3) is well-known as one of the most promising chromogenic compounds. It has a drastic change of coloration induced from different external stimuli and so its applications are developed as gas sensors, electrochromic panels or photochromic sensors. This paper focuses on the photochromic properties of nanoWO3, with tunable composition (with tunable oxygen sub-stoichiometry). Three reference samples with yellow, blue and black colors were prepared from polyol synthesis followed by post annealing under air, none post-annealing treatment, or a post-annealing under argon atmosphere. These three samples differ in terms of crystallographic structure (cubic system versus monoclinic system), oxygen vacancy concentration, electronic band diagram with occurrence of free or trapped electrons and their photochromic behavior. Constituting one main finding, it is shown that the photochromic behavior is highly dependent on the compound's composition/color. Rapid and important change of coloration under UV (ultraviolet) irradiation was evidenced especially on the blue compound, i.e., the photochromic coloring efficiency of this compound in terms of contrast between bleached and colored phase, as the kinetic aspect is high. The photochromism is reversible in a few hours. This hence opens a new window for the use of tungsten oxide as smart photochromic compounds.

9.
ACS Appl Mater Interfaces ; 11(42): 38808-38818, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31560192

RESUMO

We here present the synthesis of a new material, Na3(VO)Fe(PO4)2F2, by the sol-gel method. Its atomic and electronic structural descriptions are determined by a combination of several diffraction and spectroscopy techniques such as synchrotron X-ray powder diffraction and synchrotron X-ray absorption spectroscopy at V and Fe K edges, 57Fe Mössbauer, and 31P solid-state nuclear magnetic resonance spectroscopy. The crystal structure of this newly obtained phase is similar to that of Na3(VO)2(PO4)2F, with a random distribution of Fe3+ ions over vanadium sites. Even though Fe3+ and V4+ ions situate on the same crystallographic position, their local environment can be studied separately using 57Fe Mössbauer and X-ray absorption spectroscopy at Fe and V K edges, respectively. The Fe3+ ion resides in a symmetric octahedral environment, while the octahedral site of V4+ is greatly distorted due to the presence of the vanadyl bond. No electrochemical activity of the Fe4+/Fe3+ redox couple is detected, at least up to 5 V, whereas the reduction of Fe3+ to Fe2+ has been observed at ∼1.5 V versus Na+/Na through the insertion of 0.5 Na+ into Na3(VO)Fe(PO4)2F2. Comparing to Na3(VO)2(PO4)2F, the electrochemical profile of Na3(VO)Fe(PO4)2F2 in the same cycling condition shows a smaller polarization which could be due to a slight improvement in Na+ diffusion process thanks to the presence of Fe3+ in the framework. Furthermore, the desodiation mechanism occurring upon charging is investigated by operando synchrotron X-ray diffraction and operando synchrotron X-ray absorption at V K edge.

10.
J Phys Chem Lett ; 10(1): 107-112, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30565946

RESUMO

The properties of crystalline solids can be significantly modified by deliberately introducing point defects. Understanding these effects, however, requires understanding the changes in geometry and electronic structure of the host material. Here we report the effect of forming anion vacancies, via dehydroxylation, in a hexagonal tungsten-bronze-structured iron oxyfluoride, which has potential use as a lithium-ion battery cathode. Our combined pair distribution function and density functional theory analysis indicates that oxygen vacancy formation is accompanied by spontaneous rearrangement of fluorine anions and vacancies, producing dual pyramidal (FeF4)-O-(FeF4) structural units containing 5-fold-coordinated Fe atoms. The addition of lattice oxygen introduces new electronic states above the top of the valence band, with a corresponding reduction in the optical band gap from 4.05 to 2.05 eV. This band gap reduction relative to the FeF3 parent material is correlated with a significant improvement in lithium insertion capability relative to a defect-free compound.

11.
Inorg Chem ; 57(24): 15093-15104, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30512938

RESUMO

The mixed-valent iron arsenate hydroxide Fe13.52.22+(AsO4- x)8(OH)6, x = 0.25, was prepared using the reaction of iron metal with arsenate in aqueous solution and autogenous pressure. Its crystal structure reveals a dumortierite-like framework with mixed-valent Fe2+/Fe3+ in double chains creating channel walls. Remarkably, hexagonal channels consist of chains of face-sharing Fe2+O6 octahedra, 3/4th occupied, whereas AsO4 tetrahedra occupy triangular ones with a single " up" orientation according to the polar P63 mc symmetry. We have analyzed the transformation of this phase upon heating, in which several chemical processes interact, including dehydroxylation, arsenate to arsenite reduction, and oxidative exsolution of a significant part of iron (ca. 15%) found at the surface as hematite and amorphous Fe-rich surficial layer. It leaves a strongly disordered composite structure between several Fe3+-based subunits, in which ∼80% of them is ordered in a complex supercell. Because of the high degree of disorder, the crystal chemistry of the individual subunits and their plausible imbrication were considered to unravel the most plausible ideal 3D model.

12.
Dalton Trans ; 47(2): 382-393, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29218338

RESUMO

The synthesis of a Co-doped or Fe-doped La(Ga,Al)O3 perovskite via the Pechini process aimed to achieve a color change induced by temperature and associated with spin crossover (SCO). In Fe-doped samples, iron was shown to be in the high-spin state, whereas SCO from the low-spin to the high-spin configuration was detected in Co-doped compounds when the temperature increased. Fe-doped compounds clearly adopted the high-spin configuration even down to 4 K on the basis of Mössbauer spectroscopic analysis. The original SCO phenomenon in the Co-doped compounds LaGa1-xCoxO3 (0 < x < 0.1) was evidenced and discussed on the basis of in situ X-ray diffraction analysis and UV-vis spectroscopy. This SCO is progressive as a function of temperature and occurs over a broad range of temperatures between roughly 300 °C and 600 °C. The determination of a crystal field strength of about 2 eV and a Racah parameter B of about 500 cm-1 for Co3+ (3d6) ions show that these values allow the occurrence of SCO. Hence, this study shows the possibility of using LaGa1-xCoxO3 compounds as thermal sensors at low Co contents (x = 0.02). The competition between steric and electronic effects in LaGaO3 in which Co3+ is stabilized in the LS state shows that electronic effects with the creation of M-O covalent bonds are predominant and contribute to the stabilization of a high crystal field around Co3+ (LS) although its ionic radius is smaller in comparison with that of Ga3+.

13.
J Am Chem Soc ; 139(47): 17031-17043, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29094941

RESUMO

The multiferroic LuFe2.5+2O4 was recently proposed as a promising material for oxygen storage due to its easy reversible oxidation into LuFe3+2O4.5. We have investigated the similar scenario in YbFe2O4+x, leading to a slightly greater oxygen storage (OSC) capacity of 1434 µmol O/g. For the first time, the structural model of LnFe2O4.5 was fully understood by high-resolution microscopy images, and synchrotron and neutron diffraction experiments, as well as maximum entropy method. The oxygen uptake promotes a reconstructive shearing of the [YbO2] sub-units controlled by the adaptive Ln/Fe oxygen coordination and the Fe2/3+ redox. After oxidation, the rearrangement of the Fe coordination polyhedra is unique such that all available FeOn units (n = 6, 5, 4 in octahedra, square pyramids, trigonal bipyramids, tetrahedra) were identified in modulated rows growing in plane. This complex pseudo-ordering gives rise to short-range antiferromagnetic correlation within an insulating state.

14.
Inorg Chem ; 56(16): 10099-10106, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28796492

RESUMO

The potential application of high capacity Sn-based electrode materials for energy storage, particularly in rechargeable batteries, has led to extensive research activities. In this scope, the development of an innovative synthesis route allowing to downsize particles to the nanoscale is of particular interest owing to the ability of such nanomaterial to better accommodate volume changes upon electrochemical reactions. Here, we report on the use of room temperature ionic liquid (i.e., [EMIm+][TFSI-]) as solvent, template, and stabilizer for Sn-based nanoparticles. In such a media, we observed, using Cryo-TEM, that pure Sn nanoparticles can be stabilized. Further washing steps are, however, mandatory to remove residual ionic liquid. It is shown that the washing steps are accompanied by the partial oxidation of the surface, leading to a core-shell structured Sn/SnOx composite. To understand the structural features of such a complex architecture, HRTEM, Mössbauer spectroscopy, and the pair distribution function were employed to reveal a crystallized ß-Sn core and a SnO and SnO2 amorphous shell. The proportion of oxidized phases increases with the final washing step with water, which appeared necessary to remove not only salts but also the final surface impurities made of the cationic moieties of the ionic liquid. This work highlights the strong oxidation reactivity of Sn-based nanoparticles, which needs to be taken into account when evaluating their electrochemical properties.

15.
Inorg Chem ; 55(5): 2499-507, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26866894

RESUMO

Because of a very low thermodynamic stability, obtaining a pure monophasic compound of ferric pseudobrookite is quite difficult to achieve. Indeed, the low reticular energy of this phase leads easily to its decomposition and the occurrence of the secondary phases: hematite (Fe2O3) and/or rutile (TiO2). Samples with global composition Fe2-xTi1+xO5 (x = 0, 0.05, and 0.10) have been synthesized by the Pechini route and, thereafter, thermally treated at different temperatures. The concentrations of Fe2O3 and TiO2 secondary phases were accurately determined and correlated with the target compositions and the synthesis parameters, especially the thermal treatment temperature. As revealed by Mössbauer spectroscopy, all iron ions are at the III+ oxidation state. Thus, the formation of hematite or rutile as a secondary phase may be related to the occurrence of cationic vacancies within the pseudobrookite structure, with the amount of vacancies depending on the annealing temperature. In light of the presented results, it appears unreasonable to propose a "fixed" binary phase diagram for such a complex system. Furthermore, the occurrence of cationic vacancies induces a coloration change (darkening), preventing any industrial use of this reddish-brown pseudobrookite as a ceramic pigment.

16.
Chem Sci ; 7(7): 4251-4258, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155072

RESUMO

The thermosalient effect is still a rare and poorly understood phenomenon, where crystals suddenly jump, bend, twist or explode upon undergoing a thermally activated phase transition. The synthesis and characterisation of the new spin transition Fe(iii) compound [Fe(5-Br-salEen)2][ClO4] (salEen = N-ethyl-N-(2-aminoethyl)salicylaldiminate) is described and its thermosalient behaviour reported. It is the first example of a thermosalient effect with a spin transition and magnetic, calorimetric, diffraction, microscopy and computational studies are used to characterise these effects. Both thermosalient effect and spin transition occur around 320 K upon heating and are accompanied by an anisotropic unit cell change with conservation of crystal symmetry that causes a large enough stress of the crystal lattice to induce crystal explosion. This stress can ultimately be traced back to a diffusionless and distortive structural perturbation resulting in a coupled spin transition-thermosalient effect.

17.
ChemistryOpen ; 4(4): 443-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26478837

RESUMO

The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal-tungsten-bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.

18.
Inorg Chem ; 54(19): 9619-25, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26378743

RESUMO

Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of ß-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.

19.
Inorg Chem ; 48(13): 5623-5, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19518075

RESUMO

The very fast and efficient water vapor absorption of the dimeric fluorous copper(II)-carboxylate complex [Cu(2)(C(8)F(17)CO(2))(4)(acetone)(2)] (1) leads, in the solid state, to a dramatic decrease of the exchange magnetic coupling between the copper(II) ions and to a drastic change of its powder EPR spectrum.

20.
Environ Sci Pollut Res Int ; 15(3): 237-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18504843

RESUMO

BACKGROUND: Most historical buildings in Bordeaux city are made of limestone. This yellowish-white rock is rather porous and highly sensitive to pollution. As a consequence of local weathering conditions, these buildings present a dark appearance due to the development of a superficial dark grey to black crust. METHODS: For the last decade, a campaign has been underway to clean these buildings. Eleven techniques of surface treatment have been used, including laser beam technology. As a contribution to the study of laser beam effects on stone buildings, two analytical methods have been used on clean versus unclean surfaces: Cathodoluminescence (CL) and Electron Paramagnetic Resonance (EPR), in addition to SEM-EDX and XRD. RESULTS: The black crust is composed of different types of particles: carbon porous micro-particles of industrial origin, atmospheric dust due to the erosion of soils and rocks, alumino-silicate particles from urban pollution; all these particles being cemented by gypsum. DISCUSSION: As far as heritage conservation is concerned, the laser surface treatment not only preserves the original patina of the stone, but also leaves surface smoothness unaltered. CONCLUSIONS AND PERSPECTIVES: CL and EPR data confirm that lasers--with highly controlled parameters--only get rid of the black crust and, thus, reveal the underneath layer, the so-called patina. This patina shows no luminescence, whereas the limestone on which it has grown shows a bright orange emission of CL. This indicates CL to be a fast and easy way to provide a high quality control for the restoration of polluted ancient stones.


Assuntos
Poluição do Ar , Arquitetura , Carbonato de Cálcio , Materiais de Construção , Lasers , Espectroscopia de Ressonância de Spin Eletrônica , França , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...