Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 46: 215-226, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31326432

RESUMO

BACKGROUND: Profiles of immunity developed in filovirus patients and survivors have begun to shed light on antigen-specific cellular immune responses that had been previously under-studied. However, our knowledge of the breadth and length of those responses and the viral targets which mediate long-term memory immunity still lags significantly behind. METHODS: We characterized antigen-specific immune responses in whole blood samples of fifteen years post-infected survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001). We examined T cell and IgG responses against SUDV complete antigen and four SUDV proteins; glycoprotein (GP), nucleoprotein (NP), and viral protein 30 (VP30), and 40 (VP40). FINDINGS: We found survivors-maintained antigen-specific CD4+ T cell memory immune responses mediated mainly by the viral protein NP. In contrast, activated CD8+ T cell responses were nearly absent in SUDV survivors, regardless of the stimulating antigen used. Analysis of anti-viral humoral immunity revealed antigen-specific IgG antibodies against SUDV and SUDV proteins. Survivor IgGs mediated live SUDV neutralization in vitro and FcγRI and FcγRIII antibody Fc-dependent responses, mainly via antibodies to the viral proteins GP and VP40. INTERPRETATION: We highlight the key role of several proteins, i.e., GP, NP, and VP40, to act as mediators of distinctive and sustained cellular memory immune responses in long-term SUDV survivors. We suggest that the inclusion of these viral proteins in vaccine development may best mimic survivor native memory immune responses with the potential of protecting against viral infection. FUNDS: This research was funded by the Defense Threat Reduction Agency (CB4088) and by the National Institute Of Allergy And Infectious Diseases of the National Institutes of Health under Award Number R01AI111516. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

2.
Viruses ; 11(5)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052499

RESUMO

Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions.

3.
J Med Chem ; 62(12): 5810-5831, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31136173

RESUMO

There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine-threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells. Because AAK1 is a promising antiviral drug target, we have embarked on an optimization campaign of a previously identified 7-azaindole analogue, yielding novel pyrrolo[2,3- b]pyridines with high AAK1 affinity. The optimized compounds demonstrate improved activity against dengue virus both in vitro and in human primary dendritic cells and the unrelated Ebola virus. These findings demonstrate that targeting cellular AAK1 may represent a promising broad-spectrum antiviral strategy.

5.
J Gen Virol ; 100(6): 911-912, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021739

RESUMO

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.

6.
Nat Struct Mol Biol ; 26(3): 204-212, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30833785

RESUMO

The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.

7.
Nat Commun ; 10(1): 105, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631063

RESUMO

The 2013-2016 Ebola virus (EBOV) disease epidemic demonstrated the grave consequences of filovirus epidemics in the absence of effective therapeutics. Besides EBOV, two additional ebolaviruses, Sudan (SUDV) and Bundibugyo (BDBV) viruses, as well as multiple variants of Marburg virus (MARV), have also caused high fatality epidemics. Current experimental EBOV monoclonal antibodies (mAbs) are ineffective against SUDV, BDBV, or MARV. Here, we report that a cocktail of two broadly neutralizing ebolavirus mAbs, FVM04 and CA45, protects nonhuman primates (NHPs) against EBOV and SUDV infection when delivered four days post infection. This cocktail when supplemented by the anti-MARV mAb MR191 exhibited 100% efficacy in MARV-infected NHPs. These findings provide a solid foundation for clinical development of broadly protective immunotherapeutics for use in future filovirus epidemics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Ebolavirus/imunologia , Infecções por Filoviridae/imunologia , Marburgvirus/imunologia , Doenças dos Primatas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Ebolavirus/classificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunoterapia/métodos , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Doenças dos Primatas/terapia , Doenças dos Primatas/virologia , Primatas , Resultado do Tratamento
8.
Cell Host Microbe ; 25(1): 49-58.e5, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30629918

RESUMO

Recent and ongoing outbreaks of Ebola virus disease (EVD) underscore the unpredictable nature of ebolavirus reemergence and the urgent need for antiviral treatments. Unfortunately, available experimental vaccines and immunotherapeutics are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against other ebolaviruses associated with EVD, including Sudan virus (SUDV) and Bundibugyo virus (BDBV). Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs), affords unprecedented effectiveness and potency as a therapeutic countermeasure to antigenically diverse ebolaviruses. MBP134AF could fully protect ferrets against lethal EBOV, SUDV, and BDBV infection, and a single 25-mg/kg dose was sufficient to protect NHPs against all three viruses. The development of MBP134AF provides a successful model for the rapid discovery and translational advancement of immunotherapeutics targeting emerging infectious diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Ebolavirus/patogenicidade , Furões/virologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Bem-Estar do Animal , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/administração & dosagem , Linhagem Celular , Cercopithecus aethiops , Modelos Animais de Doenças , Feminino , Filoviridae/imunologia , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/prevenção & controle , Infecções por Filoviridae/virologia , Glicoproteínas/imunologia , Cobaias , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Células Matadoras Naturais , Macaca , Macaca fascicularis , Masculino , Primatas , Análise de Sobrevida , Resultado do Tratamento , Proteínas Virais/imunologia
9.
Cell Host Microbe ; 25(1): 39-48.e5, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30629917

RESUMO

Passive administration of monoclonal antibodies (mAbs) is a promising therapeutic approach for Ebola virus disease (EVD). However, all mAbs and mAb cocktails that have entered clinical development are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against outbreak-causing Bundibugyo virus (BDBV) and Sudan virus (SUDV). Here, we advance MBP134, a cocktail of two broadly neutralizing human mAbs, ADI-15878 from an EVD survivor and ADI-23774 from the same survivor but specificity-matured for SUDV GP binding affinity, as a candidate pan-ebolavirus therapeutic. MBP134 potently neutralized all ebolaviruses and demonstrated greater protective efficacy than ADI-15878 alone in EBOV-challenged guinea pigs. A second-generation cocktail, MBP134AF, engineered to effectively harness natural killer (NK) cells afforded additional improvement relative to its precursor in protective efficacy against EBOV and SUDV in guinea pigs. MBP134AF is an optimized mAb cocktail suitable for evaluation as a pan-ebolavirus therapeutic in nonhuman primates.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Bem-Estar do Animal , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/uso terapêutico , Antivirais , Modelos Animais de Doenças , Ebolavirus/patogenicidade , Epitopos/imunologia , Feminino , Filoviridae/imunologia , Cobaias , Doença pelo Vírus Ebola/virologia , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Recombinantes/imunologia , Resultado do Tratamento
10.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30663023

RESUMO

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Mononegavirais/classificação , Mononegavirais/genética , Mononegavirais/isolamento & purificação , Filogenia , Virologia/organização & administração
11.
Nature ; 563(7732): 559-563, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464266

RESUMO

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.

12.
J Infect Dis ; 218(suppl_5): S365-S387, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30169850

RESUMO

Background: Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods: Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results: VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-ß1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions: Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.

13.
Cell Host Microbe ; 24(3): 405-416.e3, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173956

RESUMO

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.

14.
Cell Host Microbe ; 24(2): 221-233.e5, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30092199

RESUMO

The recent Ebola virus (EBOV) epidemic highlighted the need for effective vaccines and therapeutics to limit and prevent outbreaks. Host antibodies against EBOV are critical for controlling disease, and recombinant monoclonal antibodies (mAbs) can protect from infection. However, antibodies mediate an array of antiviral functions including neutralization as well as engagement of Fc-domain receptors on immune cells, resulting in phagocytosis or NK cell-mediated killing of infected cells. Thus, to understand the antibody features mediating EBOV protection, we examined specific Fc features associated with protection using a library of EBOV-specific mAbs. Neutralization was strongly associated with therapeutic protection against EBOV. However, several neutralizing mAbs failed to protect, while several non-neutralizing or weakly neutralizing mAbs could protect. Antibody-mediated effector functions, including phagocytosis and NK cell activation, were associated with protection, particularly for antibodies with moderate neutralizing activity. This framework identifies functional correlates that can inform therapeutic and vaccine design strategies against EBOV and other pathogens.

15.
Cell ; 174(4): 938-952.e13, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096313

RESUMO

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.

16.
Front Immunol ; 9: 1428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013549

RESUMO

The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.

17.
J Med Chem ; 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29953812

RESUMO

There is an urgent need for strategies to combat dengue and other emerging viral infections. We reported that cyclin G-associated kinase (GAK), a cellular regulator of the clathrin-associated host adaptor proteins AP-1 and AP-2, regulates intracellular trafficking of multiple unrelated RNA viruses during early and late stages of the viral lifecycle. We also reported the discovery of potent, selective GAK inhibitors based on an isothiazolo[4,3- b]pyridine scaffold, albeit with moderate antiviral activity. Here, we describe our efforts leading to the discovery of novel isothiazolo[4,3- b]pyridines that maintain high GAK affinity and selectivity. These compounds demonstrate improved in vitro activity against dengue virus, including in human primary dendritic cells, and efficacy against the unrelated Ebola and chikungunya viruses. Moreover, inhibition of GAK activity was validated as an important mechanism of antiviral action of these compounds. These findings demonstrate the potential utility of a GAK-targeted broad-spectrum approach for combating currently untreatable emerging viral infections.

18.
Viruses ; 10(6)2018 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861435

RESUMO

Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.

19.
Proc Natl Acad Sci U S A ; 115(28): 7410-7415, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941593

RESUMO

The 2014 western Africa Ebola virus (EBOV) epidemic was unprecedented in magnitude, infecting over 28,000 and causing over 11,000 deaths. During this outbreak, multiple instances of EBOV sexual transmission were reported, including cases where the infectious individual had recovered from EBOV disease months before transmission. Potential human host factors in EBOV sexual transmission remain unstudied. Several basic seminal amyloids, most notably semen-derived enhancer of viral infection (SEVI), enhance in vitro infection by HIV and several other viruses. To test the ability of these peptides to enhance EBOV infection, viruses bearing the EBOV glycoprotein (EboGP) were preincubated with physiological concentrations of SEVI before infection of physiologically relevant cell lines and primary cells. Preincubation with SEVI significantly increased EboGP-mediated infectivity and replication in epithelium- and monocyte-derived cell lines. This enhancement was dependent upon amyloidogenesis and positive charge, and infection results were observed with both viruses carrying EboGP and authentic EBOV as well as with semen. SEVI enhanced binding of virus to cells and markedly increased its subsequent internalization. SEVI also stimulated uptake of a fluid phase marker by macropinocytosis, a critical mechanism by which cells internalize EBOV. We report a previously unrecognized ability of SEVI and semen to significantly alter viral physical properties critical for transmissibility by increasing the stability of EboGP-bearing recombinant viruses during incubation at elevated temperature and providing resistance to desiccation. Given the potential for EBOV sexual transmission to spark new transmission chains, these findings represent an important interrogation of factors potentially important for this EBOV transmission route.


Assuntos
Amiloide/metabolismo , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/transmissão , Proteínas de Plasma Seminal/metabolismo , Proteínas Virais/metabolismo , Amiloide/genética , Ebolavirus/genética , Feminino , Glicoproteínas/genética , Células HeLa , Doença pelo Vírus Ebola/genética , Humanos , Masculino , Proteínas de Plasma Seminal/genética , Proteínas Virais/genética
20.
J Infect Dis ; 218(4): 555-562, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29659889

RESUMO

Background: Ebola virus (EBOV) neutralizing antibody in plasma may reduce viral load following administration of plasma to patients with Ebola virus disease (EVD), but measurement of these antibodies is complex. Methods: Anti-EBOV antibody was measured by 2 neutralization and 2 enzyme-linked immunosorbent assays (ELISAs) in convalescent plasma (ECP) from 100 EVD survivor donors in Liberia. Viral load was assessed repetitively in patients with EVD participating in a clinical trial of enhanced standard of care plus ECP. Results: All 4 anti-EBOV assays were highly concordant for detection of EBOV antibody. Antibodies were not detected in plasma specimens obtained from 15 of 100 donors, including 7 with documented EBOV-positive reverse-transcription polymerase chain reaction during EVD. Viral load was reduced following each dose in the 2 clinical trial participants who received ECP with higher antibody levels but not in the 2 who received ECP with lower antibody levels. Conclusions: Recovery from EVD can occur with absence of detectable anti-EBOV antibody several months after disease onset. ELISAs may be useful to select ECP donors or identify ECP units that contain neutralizing antibody. ECP with higher anti-EBOV antibody levels may have greater effect on EBOV load-an observation that requires further investigation. Clinical Trials Registration: NCT02333578.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA